Photo AI

Let $z = 1 + 2i$ and $w = 3 - i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2004 - Paper 1

Question icon

Question 2

Let-$z-=-1-+-2i$-and-$w-=-3---i$-HSC-SSCE Mathematics Extension 2-Question 2-2004-Paper 1.png

Let $z = 1 + 2i$ and $w = 3 - i$. (a) Find, in the form $x + iy$, (i) $zw$. (ii) $\frac{10}{z}$. (b) Let $\alpha = 1 + i\sqrt{3}$ and $\beta = 1 + i$. (... show full transcript

Worked Solution & Example Answer:Let $z = 1 + 2i$ and $w = 3 - i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2004 - Paper 1

Step 1

Find, in the form $x + iy$, (i) $zw$

96%

114 rated

Answer

To find zwzw, we multiply the two complex numbers:

zw=(1+2i)(3i)=3+6i1i2i2=3+6i+2=5+5i.zw = (1 + 2i)(3 - i) = 3 + 6i - 1i - 2i^2 = 3 + 6i + 2 = 5 + 5i.

Thus, the answer is 5+5i5 + 5i.

Step 2

Find, in the form $x + iy$, (ii) $\frac{10}{z}$

99%

104 rated

Answer

To compute 10z\frac{10}{z}, we need to multiply the numerator and the denominator by the conjugate of zz:

10z=101+2i12i12i=10(12i)12+(2i)2=10(12i)1+4=10(12i)5=24i.\frac{10}{z} = \frac{10}{1 + 2i} \cdot \frac{1 - 2i}{1 - 2i} = \frac{10(1 - 2i)}{1^2 + (2i)^2} = \frac{10(1 - 2i)}{1 + 4} = \frac{10(1 - 2i)}{5} = 2 - 4i.

Thus, the answer is 24i2 - 4i.

Step 3

Let $\alpha = 1 + i\sqrt{3}$ and $\beta = 1 + i$. (i) Find $\frac{\alpha}{\beta}$ in the form $x + iy$.

96%

101 rated

Answer

To find αβ\frac{\alpha}{\beta},

αβ=1+i31+i1i1i=(1+i3)(1i)1+1=(1i+i3+3)2=(1+3)+(31)i2.\frac{\alpha}{\beta} = \frac{1 + i\sqrt{3}}{1 + i} \cdot \frac{1 - i}{1 - i} = \frac{(1 + i\sqrt{3})(1 - i)}{1 + 1} = \frac{(1 - i + i\sqrt{3} + \sqrt{3})}{2} = \frac{(1 + \sqrt{3}) + (\sqrt{3} - 1)i}{2}.

Thus, converting gives us 1+32+312i\frac{1 + \sqrt{3}}{2} +\frac{\sqrt{3} - 1}{2}i.

Step 4

Let $\alpha = 1 + i\sqrt{3}$ and $\beta = 1 + i$. (ii) Express $\alpha$ in modulus-argument form.

98%

120 rated

Answer

First, we find the modulus of α\alpha:

α=(1)2+(3)2=1+3=2.|\alpha| = \sqrt{(1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = 2.

Next, the argument of α\alpha is given by:

θ=tan1(31)=π3. \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} .

Thus, α\alpha in modulus-argument form is: α=2(cosπ3+isinπ3).\alpha = 2 \left( \cos\frac{\pi}{3} + i \sin\frac{\pi}{3} \right).

Step 5

Let $\beta$ has the modulus-argument form (iii) Given that $\beta = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$, find the modulus-argument form of $\frac{\alpha}{\beta}$.

97%

117 rated

Answer

To find the modulus-argument form of αβ\frac{\alpha}{\beta}:

The modulus: αβ=22=2.\frac{|\alpha|}{|\beta|} = \frac{2}{\sqrt{2}} = \sqrt{2}.

The argument: arg(α)arg(β)=π3π4=4π3π12=π12.\arg(\alpha) - \arg(\beta) = \frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12}.

Therefore: αβ=2(cosπ12+isinπ12).\frac{\alpha}{\beta} = \sqrt{2}\left(\cos\frac{\pi}{12} + i \sin\frac{\pi}{12}\right).

Step 6

Hence find the exact value of $\sin\frac{\pi}{12}$. (iv)

97%

121 rated

Answer

Using the sine function from the modulus-argument form; $$\sin\frac{\pi}{12} = \sin(\frac{\pi}{3} - \frac{\pi}{4}) = \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \cos\frac{\pi}{3}\sin\frac{\pi}{4} = \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3}-1}{2\sqrt{2}}.$

Step 7

Sketch the region in the complex plane where the inequalities (c) $|z + z| \leq 1$ and $|z - i| \leq 1$ hold simultaneously.

96%

114 rated

Answer

  1. The inequality z+z1|z + z| \leq 1 defines the area inside the circle centered at the origin with radius 1.
  2. The inequality zi1|z - i| \leq 1 defines the area inside the circle centered at (0, 1) with radius 1.
  3. The intersection of these two regions represents the solution set, which is a lens-shaped area in the complex plane.

Step 8

Using the fact that C lies on the circle, show geometrically that (d) $\angle OAC = \frac{2\pi}{3}$.

99%

104 rated

Answer

Since point C lies on the circle, the segments OA and OC must meet at right angles. The angles AOB and AOC form a triangle with angle AOC being the external angle: Thus: OAC+AOB+AOC=(2π3+2OAC=πOAC=2π3.\angle OAC + \angle AOB + \angle AOC = \\(\frac{2\pi}{3} + 2\angle OAC = \pi \Rightarrow \angle OAC = \frac{2\pi}{3}.

Step 9

Hence show that (ii) $z^3 = w^3$.

96%

101 rated

Answer

From above: Using the geometric relationships on angles: If OAC=2π3\angle OAC = \frac{2\pi}{3}, hence it follows that:

where both have same r, leading us to conclude: z3=w3. z^3 = w^3.

Step 10

Show that (iii) $z^2 + w^2 + 2zw = 0$.

98%

120 rated

Answer

From the concept of complex multiplication of angles and magnitudes, we have: (z+w)2=z2+w2+2zw=0 \left(z + w\right)^2 = z^2 + w^2 + 2zw = 0 This proves that the expression sums to yield zero.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;