Photo AI

Let $w = 2 - 3i$ and $z = 3 + 4i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2011 - Paper 1

Question icon

Question 2

Let-$w-=-2---3i$-and-$z-=-3-+-4i$-HSC-SSCE Mathematics Extension 2-Question 2-2011-Paper 1.png

Let $w = 2 - 3i$ and $z = 3 + 4i$. (i) Find $\overline{w} + z$. (ii) Find $|w|$. (iii) Express $\frac{w}{z}$ in the form $a + ib$, where $a$ and $b$ are real ... show full transcript

Worked Solution & Example Answer:Let $w = 2 - 3i$ and $z = 3 + 4i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2011 - Paper 1

Step 1

Find $\overline{w} + z$

96%

114 rated

Answer

To find w\overline{w}, we take the conjugate of w=23iw = 2 - 3i, resulting in w=2+3i\overline{w} = 2 + 3i. Therefore,

w+z=(2+3i)+(3+4i)=5+7i.\overline{w} + z = (2 + 3i) + (3 + 4i) = 5 + 7i.

Step 2

Find $|w|$

99%

104 rated

Answer

The modulus of a complex number w=a+biw = a + bi is given by the formula:

w=a2+b2.|w| = \sqrt{a^2 + b^2}.
For w=23iw = 2 - 3i, we have a=2a = 2 and b=3b = -3. Thus,

w=22+(3)2=4+9=13.|w| = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13}.

Step 3

Express $\frac{w}{z}$ in the form $a + ib$

96%

101 rated

Answer

To express wz\frac{w}{z} in the form a+iba + ib, we start by dividing the complex numbers:

wz=23i3+4i.\frac{w}{z} = \frac{2 - 3i}{3 + 4i}.
Multiply the numerator and denominator by the conjugate of the denominator:

(23i)(34i)(3+4i)(34i).\frac{(2 - 3i)(3 - 4i)}{(3 + 4i)(3 - 4i)}.
Calculating the denominator:

(3+4i)(34i)=9+16=25.(3 + 4i)(3 - 4i) = 9 + 16 = 25.
Now for the numerator:

(23+2(4i)3i33i(4i))=(6+12)+(89)i=1817i.(2\cdot3 + 2\cdot(-4i) - 3i\cdot3 - 3i\cdot(-4i)) = (6 + 12) + (-8 - 9)i = 18 - 17i.
Thus,

wz=1817i25=18251725i.\frac{w}{z} = \frac{18 - 17i}{25} = \frac{18}{25} - \frac{17}{25}i.

Step 4

Find $z$ in the form $a + ib$

98%

120 rated

Answer

Given the triangle formed by the points 00, 1+i31 + i\sqrt{3}, and 3+i\sqrt{3} + i, we need to find zz.
Using the properties of a rhombus, the diagonals bisect each other perpendicularly.
We find the midpoints and use vector addition to find that:

z = 1 + rac{3}{2}i.
Thus, z=1+i32.z = 1 + i\frac{3}{2}.

Step 5

Find the value of $\theta$

97%

117 rated

Answer

In a rhombus, opposite angles are equal. The interior angle θ\theta can be derived using trigonometric identities.
A right triangle in the rhombus gives:

tan(θ)=oppositeadjacent=31.\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{3}}{1}.
Thus,

θ=tan1(3)=π3.\theta = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}.

Step 6

Find all solutions of $z^3 = 8$

97%

121 rated

Answer

Using the modulus-argument form:
The modulus is 8=8|8| = 8, and the argument is arg(8)=0\arg(8) = 0. The general solution is given by:

z=2cis(2kπ3),  k=0,1,2.z = 2 \text{cis} \left(\frac{2k\pi}{3}\right), \; k = 0, 1, 2.
Calculating yields:

  • For k=0k = 0: z0=2z_0 = 2.
  • For k=1k = 1: z1=1+i3z_1 = -1 + i\sqrt{3}.
  • For k=2k = 2: z2=1i3z_2 = -1 - i\sqrt{3}.

Step 7

Use the binomial theorem to expand $\left(\cos \theta + i \sin \theta\right)^3$

96%

114 rated

Answer

Using Binomial theorem, we write:

(a+b)n=k=0n(nk)ankbk.(a + b)^n = \sum_{k=0}^{n} {n \choose k} a^{n-k} b^k.
For our expression:

(cosθ+isinθ)3=k=03(3k)(cosθ)3k(isinθ)k.\left(\cos \theta + i \sin \theta\right)^3 = \sum_{k=0}^{3} {3 \choose k} (\cos \theta)^{3-k} (i \sin \theta)^k.
Calculating gives:

=cos3θ+3cos2θ(isinθ)3cosθ(sin2θ)isin3θ.= \cos^3 \theta + 3\cos^2 \theta (i \sin \theta) - 3\cos \theta (\sin^2 \theta) - i\sin^3 \theta.

Step 8

Use de Moivre's theorem to prove $\cos^3 \theta = \frac{1}{4}\cos 3\theta + \frac{3}{4}$

99%

104 rated

Answer

Using de Moivre's theorem, we know:

(cosθ+isinθ)3=cos(3θ)+isin(3θ).\left(\cos \theta + i\sin \theta\right)^3 = \cos(3\theta) + i\sin(3\theta).
Separating real and imaginary parts gives:

cos3θ3cosθsin2θ=cos(3θ).\cos^3 \theta - 3\cos \theta \sin^2 \theta = \cos(3\theta).
Rewriting:

cos3θ=14cos(3θ)+34.\cos^3 \theta = \frac{1}{4}\cos(3\theta) + \frac{3}{4}.

Step 9

Find the smallest positive solution of $4\cos^3 \theta = 3\cos \theta$

96%

101 rated

Answer

We rearrange to:

4cos3θ3cosθ=0.4\cos^3 \theta - 3\cos \theta = 0.
Factoring gives:

cosθ(4cos2θ3)=0.\cos \theta (4\cos^2 \theta - 3) = 0.
Thus, solutions are: cosθ=0\cos \theta = 0 or cos2θ=34cosθ=±32.\cos^2 \theta = \frac{3}{4} \Rightarrow \cos \theta = \pm \frac{\sqrt{3}}{2}. The smallest positive solution occurs at:

θ=π6.\theta = \frac{\pi}{6}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;