Photo AI

Let $z = 1 + 2i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Question icon

Question 2

Let-$z-=-1-+-2i$-and-$w-=-1-+-i$-HSC-SSCE Mathematics Extension 2-Question 2-2002-Paper 1.png

Let $z = 1 + 2i$ and $w = 1 + i$. Find, in the form $x + iy$, (i) $z ar{w}$ (ii) $\frac{1}{w}$ (b) On an Argand diagram, shade in the region where the inequalit... show full transcript

Worked Solution & Example Answer:Let $z = 1 + 2i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Step 1

Find, in the form $x + iy$, $z \bar{w}$

96%

114 rated

Answer

To find zwˉz \bar{w}, we first calculate wˉ\bar{w}, the conjugate of ww:

wˉ=1i\bar{w} = 1 - i

Now, we multiply zz and wˉ\bar{w}:

zwˉ=(1+2i)(1i)z \bar{w} = (1 + 2i)(1 - i)

Using the distributive property (FOIL):

=11+1(i)+2i1+2i(i)= 1 \cdot 1 + 1 \cdot (-i) + 2i \cdot 1 + 2i \cdot (-i) =1i+2i2i2= 1 - i + 2i - 2 \cdot i^2

Recall that i2=1i^2 = -1, therefore: =1i+2i+2= 1 - i + 2i + 2 =3+i= 3 + i

Thus, zwˉ=3+iz \bar{w} = 3 + i.

Step 2

Find, in the form $x + iy$, $\frac{1}{w}$

99%

104 rated

Answer

To find 1w\frac{1}{w} where w=1+iw = 1 + i, we multiply the numerator and the denominator by the conjugate of the denominator:

1w=11+i1i1i\frac{1}{w} = \frac{1}{1 + i} \cdot \frac{1 - i}{1 - i}

This gives us: =1i1+ii2= \frac{1 - i}{1 + i - i^2} =1i1+1=1i2= \frac{1 - i}{1 + 1} = \frac{1 - i}{2}

So, 1w=1212i\frac{1}{w} = \frac{1}{2} - \frac{1}{2}i.

Step 3

On an Argand diagram, shade the region where the inequalities $0 \leq Re z \leq 2$ and $|z - 1 + i| \leq 2$ hold.

96%

101 rated

Answer

To shade the region defined by these inequalities:

  1. For 0Rez20 \leq Re z \leq 2:

    • This represents a vertical strip on the Argand plane from x=0x = 0 to x=2x = 2.
  2. For z1+i2|z - 1 + i| \leq 2:

    • This represents all points within or on the circle centered at (1,1)(1, 1) with radius 2.
    • The equation of this circle is given by (x1)2+(y1)24(x - 1)^2 + (y - 1)^2 \leq 4.

Now, shade the area that overlaps between the vertical strip and the circle.

Step 4

State why $2 - i$ is also a root of $P(z)$

98%

120 rated

Answer

Since P(z)P(z) has real coefficients, any non-real root must have its complex conjugate as a root as well. Given that 2+i2 + i is a root, its conjugate 2i2 - i must also be a root.

Step 5

Factorise $P(z)$ over the real numbers.

97%

117 rated

Answer

Given that 2+i2 + i and 2i2 - i are roots, we can factorize P(z)P(z) as follows:

  1. Start with the factors corresponding to these roots: (z(2+i))(z(2i))=(z2i)(z2+i)(z - (2 + i))(z - (2 - i)) = (z - 2 - i)(z - 2 + i) Simplifying, this gives: (z2)2+1=z24z+5(z - 2)^2 + 1 = z^2 - 4z + 5

  2. Therefore, we can express P(z)P(z) as: P(z)=(z24z+5)(z+r)=z3+rz2+sz+20P(z) = (z^2 - 4z + 5)(z + r) = z^3 + r z^2 + s z + 20

Utilizing Vieta’s formulas, we can find rr and ss by matching coefficients.

Step 6

Prove by induction that, for all integers $n \geq 1$, $(\cos \theta - i \sin \theta)^n = \cos(n\theta) - i\sin(n\theta)$

97%

121 rated

Answer

To prove by induction:

Base case (n=1): cosθisinθ=cos(1θ)isin(1θ)\cos \theta - i \sin \theta = \cos(1\theta) - i\sin(1\theta)

  • This is true.

Inductive step: Assume true for n=kn=k, i.e., (cosθisinθ)k=cos(kθ)isin(kθ)(\cos \theta - i \sin \theta)^k = \cos(k\theta) - i\sin(k\theta) Then for n=k+1n=k+1:

(\cos \theta - i \sin \theta)^{k+1} &= (\cos \theta - i \sin \theta)(\cos(k\theta) - i\sin(k\theta)) \\ &= \cos \theta \cos(k\theta) + \sin \theta \sin(k\theta) - i(\sin \theta \cos(k\theta) - \cos \theta \sin(k\theta)) \\ &= \cos((k+1)\theta) - i\sin((k+1)\theta) \end{align*}$$ Therefore, true for $n=k+1$. Hence, by induction, true for all integers $n \geq 1$.

Step 7

Find $\bar{z}$.

96%

114 rated

Answer

Given z=2(cosθ+isinθ)z = 2(\cos \theta + i \sin \theta), we can find the conjugate as follows:

zˉ=2(cosθisinθ)\bar{z} = 2(\cos \theta - i \sin \theta)

This defines the conjugate of a complex number given its polar form.

Step 8

Show that the real part of $\frac{1}{1 - z}$ is $\frac{1 - 2 \cos \theta}{5 - 4 \cos \theta}$.

99%

104 rated

Answer

To find the real part:

  1. First, calculate 11z\frac{1}{1 - z}: =112(cosθ+isinθ)=112cosθ2isinθ= \frac{1}{1 - 2(\cos \theta + i \sin \theta)} = \frac{1}{1 - 2 \cos \theta - 2i \sin \theta}

  2. Multiply numerator and denominator by the conjugate of the denominator: =1(12cosθ+2isinθ)(12cosθ)2+(2sinθ)2= \frac{1(1 - 2 \cos \theta + 2i \sin \theta)}{(1 - 2 \cos \theta)^2 + (2 \sin \theta)^2}

  3. Simplifying the denominator: =12cosθ+2isinθ14cosθ+4cos2θ+4sin2θ= \frac{1 - 2 \cos \theta + 2i \sin \theta}{1 - 4 \cos \theta + 4 \cos^2 \theta + 4 \sin^2 \theta} Note that cos2θ+sin2θ=1\cos^2 \theta + \sin^2 \theta = 1. Hence, =12cosθ+2isinθ54cosθ= \frac{1 - 2 \cos \theta + 2i \sin \theta}{5 - 4 \cos \theta}

  4. Therefore, the real part is: 12cosθ54cosθ\frac{1 - 2 \cos \theta}{5 - 4 \cos \theta}.

Step 9

Express the imaginary part of $\frac{1}{1 - z}$ in terms of $\theta$.

96%

101 rated

Answer

Building upon the previous steps, the imaginary part of 11z\frac{1}{1 - z} is:

  1. From our earlier expression: 12cosθ+2isinθ54cosθ\frac{1 - 2 \cos \theta + 2i \sin \theta}{5 - 4 \cos \theta}

  2. The imaginary part is given by: Imaginary part=2sinθ54cosθ\text{Imaginary part} = \frac{2 \sin \theta}{5 - 4 \cos \theta}

Thus, the imaginary part of 11z\frac{1}{1 - z} in terms of θ\theta is: 2sinθ54cosθ\frac{2 \sin \theta}{5 - 4 \cos \theta}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;