Photo AI

Consider the complex numbers $w = -1 + 4i$ and $z = 2 - i$ - HSC - SSCE Mathematics Extension 2 - Question 11 - 2020 - Paper 1

Question icon

Question 11

Consider-the-complex-numbers-$w-=--1-+-4i$-and-$z-=-2---i$-HSC-SSCE Mathematics Extension 2-Question 11-2020-Paper 1.png

Consider the complex numbers $w = -1 + 4i$ and $z = 2 - i$. (i) Evaluate $|w|$. (ii) Evaluate $wz$. Use integration by parts to evaluate $$\int_{1}^{e} x \ln x \,... show full transcript

Worked Solution & Example Answer:Consider the complex numbers $w = -1 + 4i$ and $z = 2 - i$ - HSC - SSCE Mathematics Extension 2 - Question 11 - 2020 - Paper 1

Step 1

(i) Evaluate $|w|$

96%

114 rated

Answer

To find the modulus of the complex number w=1+4iw = -1 + 4i, we use the formula for the modulus: w=a2+b2,|w| = \sqrt{a^2 + b^2}, where aa and bb are the real and imaginary parts respectively. Thus,

w=(1)2+(4)2=1+16=17.|w| = \sqrt{(-1)^2 + (4)^2} = \sqrt{1 + 16} = \sqrt{17}.

Therefore, the evaluation gives us: w=17.|w| = \sqrt{17}.

Step 2

(ii) Evaluate $wz$

99%

104 rated

Answer

To evaluate the product of the complex numbers ww and zz, we calculate:

wz=(1+4i)(2i).wz = (-1 + 4i)(2 - i). Using the distributive property (FOIL), we get:

wz=2+i+8i4i2.wz = -2 + i + 8i - 4i^2. Since i2=1i^2 = -1, we have:

4i2=4-4i^2 = 4 Thus,

wz=2+9i+4=2+9i.wz = -2 + 9i + 4 = 2 + 9i.

Step 3

Use integration by parts to evaluate $\int_{1}^{e} x \ln x \, dx$

96%

101 rated

Answer

For integration by parts, we choose:

  • Let u=lnxu = \ln xdu=1xdxdu = \frac{1}{x} \, dx
  • Let dv=xdxdv = x \, dxv=x22v = \frac{x^2}{2}

Now, applying the integration by parts formula: udv=uvvdu,\int u \, dv = uv - \int v \, du,
we get:

xlnxdx=x22lnxx221xdx.\int x \ln x \, dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx.
This simplifies to:

xlnxdx=x22lnx12xdx=x22lnxx24+C.\int x \ln x \, dx = \frac{x^2}{2} \ln x - \frac{1}{2} \int x \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C.

Evaluating from 1 to ee:

[e22lnee24][122ln1124]=[e22e24][014].\left[ \frac{e^2}{2} \ln e - \frac{e^2}{4} \right] - \left[ \frac{1^2}{2} \ln 1 - \frac{1^2}{4} \right] = \left[ \frac{e^2}{2} - \frac{e^2}{4} \right] - \left[ 0 - \frac{1}{4} \right].

Thus,

e24+14=e2+14.\frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}.

Step 4

Find an expression for $x$, the displacement of the particle, in terms of $v$

98%

120 rated

Answer

Given the acceleration: a=y2+v,a = y^2 + v,
we know that acceleration is the derivative of velocity: a=dvdx.a = \frac{dv}{dx}.
Thus,

dvdx=y2+v.\frac{dv}{dx} = y^2 + v.
Rearranging gives: dxdv=1y2+v.\frac{dx}{dv} = \frac{1}{y^2 + v}.
To find xx, integrate with respect to vv:

x=1v+y2dv+C.x = \int \frac{1}{v + y^2} \, dv + C.
Integrating yields: x=ln(v+y2)+C.x = \ln(v + y^2) + C. Considering that at x=0x = 0, v=1v = 1 gives: 0=ln(1+y2)+C    C=ln(1+y2).0 = \ln(1 + y^2) + C \implies C = -\ln(1 + y^2).
So,

x=ln(v+1)ln(1+y2)=ln(v+11+y2).x = \ln(v + 1) - \ln(1 + y^2) = \ln\left(\frac{v + 1}{1 + y^2}\right).

Step 5

For what values of $\rho$ are $u + v$ perpendicular?

97%

117 rated

Answer

To determine when the vectors uu and vv are perpendicular, we compute:

u+v=(2ij+3k)+(ρi+j+2k)=(2+ρ)i+(0)j+(3+2)k.u + v = (-2i - j + 3k) + (\rho i + j + 2k) = (-2 + \rho)i + (0)j + (3 + 2)k.
For perpendicular vectors, their dot product must equal zero:

uv=(2+ρ)(0)+(0)(1)+(5)(3)=5(2+ρ)=0.u \cdot v = (-2 + \rho)(0) + (0)(1) + (5)(3) = 5(2 + \rho) = 0. Thus, ρ=2.\rho = -2.

Therefore, the value of ρ\rho that makes u+vu + v perpendicular is: ρ=2.\rho = -2.

Step 6

Solve $z^2 + 3z + (3 - i) = 0$

97%

121 rated

Answer

The equation takes the form: z2+3z+(3i)=0.z^2 + 3z + (3 - i) = 0.
Using the quadratic formula: z=b±b24ac2a,z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, here, a=1a = 1, b=3b = 3, and c=3ic = 3 - i. Thus,

Δ=94(1)(3i)=912+4i=3+4i.\Delta = 9 - 4(1)(3 - i) = 9 - 12 + 4i = -3 + 4i.
Now, find the square root: 3+4i=1+2i.\sqrt{-3 + 4i} = 1 + 2i. Substituting back into the quadratic formula: z=3±(1+2i)2.z = \frac{-3 \pm (1 + 2i)}{2}. Calculating yields: z1=3+1+2i2=1+i,z2=312i2=2i.z_1 = \frac{-3 + 1 + 2i}{2} = -1 + i, \\ z_2 = \frac{-3 - 1 - 2i}{2} = -2 - i.
Thus, the final answers are: z=1+iandz=2i.z = -1 + i \, \text{and} \, z = -2 - i.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;