For integration by parts, we choose:
- Let u=lnx ⇒ du=x1dx
- Let dv=xdx ⇒ v=2x2
Now, applying the integration by parts formula:
∫udv=uv−∫vdu,
we get:
∫xlnxdx=2x2lnx−∫2x2⋅x1dx.
This simplifies to:
∫xlnxdx=2x2lnx−21∫xdx=2x2lnx−4x2+C.
Evaluating from 1 to e:
[2e2lne−4e2]−[212ln1−412]=[2e2−4e2]−[0−41].
Thus,
4e2+41=4e2+1.