Photo AI

Let $I_n = \int_0^1 x^n \sqrt{1 - x^2} \, dx$, for $n = 0, 1, 2, \ldots$ - HSC - SSCE Mathematics Extension 2 - Question 15 - 2017 - Paper 1

Question icon

Question 15

Let-$I_n-=-\int_0^1-x^n-\sqrt{1---x^2}-\,-dx$,-for-$n-=-0,-1,-2,-\ldots$-HSC-SSCE Mathematics Extension 2-Question 15-2017-Paper 1.png

Let $I_n = \int_0^1 x^n \sqrt{1 - x^2} \, dx$, for $n = 0, 1, 2, \ldots$. (i) Find the value of $I_1$. (ii) Using integration by parts, or otherwise, show that f... show full transcript

Worked Solution & Example Answer:Let $I_n = \int_0^1 x^n \sqrt{1 - x^2} \, dx$, for $n = 0, 1, 2, \ldots$ - HSC - SSCE Mathematics Extension 2 - Question 15 - 2017 - Paper 1

Step 1

Find the value of $I_1$

96%

114 rated

Answer

To find the value of I1I_1, we evaluate the integral:

I1=01x1x2dx.I_1 = \int_0^1 x \sqrt{1 - x^2} \, dx.

Using the substitution u=1x2u = 1 - x^2, thus du=2xdxdu = -2x \, dx, we rewrite:

I1=1210udu=13.I_1 = -\frac{1}{2} \int_1^0 \sqrt{u} \, du = \frac{1}{3}.

Therefore, the value of I1I_1 is ( \frac{1}{3} ).

Step 2

Using integration by parts, or otherwise, show that for $n \geq 2$

99%

104 rated

Answer

We shall use integration by parts for:

$$I_n = \int_0^1 x^n \sqrt{1 - x^2} , dx.$$$$ Let ( u = \sqrt{1 - x^2} ) and ( dv = x^n , dx ), then:

du=x1x2dx,v=xn+1n+1.du = -\frac{x}{\sqrt{1 - x^2}} \, dx, \, v = \frac{x^{n+1}}{n + 1}.

Then,

In=[uv]0101vduI_n = \left[ u v \right]_0^1 - \int_0^1 v \, du =[xn+11x2n+1]0101xn+1n+1(x1x2)dx= \left[ \frac{x^{n+1} \sqrt{1 - x^2}}{n + 1} \right]_0^1 - \int_0^1 \frac{x^{n + 1}}{n + 1} \left(-\frac{x}{\sqrt{1 - x^2}} \right) dx =0+12(n+1)01xn+2(1x2)1/2dx= 0 + \frac{1}{2(n + 1)} \int_0^1 x^{n + 2} (1 - x^2)^{-1/2} dx Finally, simplifying gives:

In=(n1)(n+2)In2.I_n = \frac{(n - 1)}{(n + 2)} I_{n - 2}.

Step 3

Find the value of $I_5$

96%

101 rated

Answer

Using the recursive formula:

I5=(51)(5+2)I3=47I3.I_5 = \frac{(5 - 1)}{(5 + 2)} I_{3} = \frac{4}{7} I_{3}.

We can repeat this process: I3=(31)(3+2)I1=2513=215.I_3 = \frac{(3 - 1)}{(3 + 2)} I_{1} = \frac{2}{5} \cdot \frac{1}{3} = \frac{2}{15}.

So, I5=47215=8105.I_5 = \frac{4}{7} \cdot \frac{2}{15} = \frac{8}{105}.

Step 4

Show that the equation of the tangent to the curve at the point $P(c, d)$ is given by $\sqrt{c} + x \sqrt{d} = d + c \sqrt{a}$

98%

120 rated

Answer

To find the equation of the tangent, we differentiate x+y=a\sqrt{x} + \sqrt{y} = \sqrt{a} implicitly:

12x+12ydydx=0,\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0,

which gives: dydx=yx.\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}.

At point P(c, d): dydx=dc.\frac{dy}{dx} = -\frac{\sqrt{d}}{\sqrt{c}}.

Using point-slope form:

yd=dc(xc).y - d = -\frac{\sqrt{d}}{\sqrt{c}}(x - c). Rearranging leads us to: c+xd=d+ca.\sqrt{c} + x \sqrt{d} = d + c \sqrt{a}.

Step 5

Show that $OA + OB = a$

97%

117 rated

Answer

Let A be where the tangent meets the x-axis and B where it meets the y-axis. The intercept on the x-axis can be found by setting y=0y=0 in the tangent equation, and similarly for the y-intercept.

From geometry, the lengths OA and OB can be calculated and adding them gives:

OA+OB=c+d=a,OA + OB = c + d = a,

showing the required result.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;