Photo AI

Question 6 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 6 - 2003 - Paper 1

Question icon

Question 6

Question-6-(15-marks)-Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 2-Question 6-2003-Paper 1.png

Question 6 (15 marks) Use a SEPARATE writing booklet. (a) (i) Prove the identity $ \cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b)$. (ii) Hence find $ \int \cos 3x \cos 2... show full transcript

Worked Solution & Example Answer:Question 6 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 6 - 2003 - Paper 1

Step 1

Prove the identity $\cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b)$

96%

114 rated

Answer

To prove the identity, we begin with the definitions of cosine:

  1. Using the angle addition formula, we have: cos(a+b)=cosacosbsinasinb\cos(a+b) = \cos a \cos b - \sin a \sin b and cos(ab)=cosacosb+sinasinb\cos(a-b) = \cos a \cos b + \sin a \sin b.
  2. Adding these two equations: cos(a+b)+cos(ab)=2cosacosb\cos(a+b) + \cos(a-b) = 2\cos a \cos b. Thus, the identity is proven.

Step 2

Hence find $\int \cos 3x \cos 2x \, dx$

99%

104 rated

Answer

To find the integral, we can use the identity proven in part (i):

  1. Rewriting cos3xcos2x \cos 3x \cos 2x using the identity: cos3xcos2x=12(cos(3x+2x)+cos(3x2x))=12(cos5x+cosx).\cos 3x \cos 2x = \frac{1}{2}(\cos(3x + 2x) + \cos(3x - 2x)) = \frac{1}{2}(\cos 5x + \cos x).
  2. Now integrate: cos3xcos2xdx=12(cos5xdx+cosxdx).\int \cos 3x \cos 2x \, dx = \frac{1}{2} \left( \int \cos 5x \, dx + \int \cos x \, dx \right).
  3. The integrals become: =12(15sin5x+sinx)+C.= \frac{1}{2}\left( \frac{1}{5}\sin 5x + \sin x \right) + C.
  4. Therefore, cos3xcos2xdx=110sin5x+12sinx+C.\int \cos 3x \cos 2x \, dx = \frac{1}{10}\sin 5x + \frac{1}{2}\sin x + C.

Step 3

Find $s_3$ and $s_4$

96%

101 rated

Answer

To find s3s_3 and s4s_4, use the recurrence relation:

  1. For s3s_3: s3=s2+(31)s1=2+21=4.s_3 = s_2 + (3-1)s_1 = 2 + 2 \cdot 1 = 4.
  2. For s4s_4: s4=s3+(41)s2=4+32=10.s_4 = s_3 + (4-1)s_2 = 4 + 3 \cdot 2 = 10. Thus, s3=4s_3 = 4 and s4=10s_4 = 10.

Step 4

Prove that $\sqrt{x + x^2} = \sqrt{x(x+1)}$ for all real numbers $x \geq 0$

98%

120 rated

Answer

To prove this identity, consider:

  1. The left side: x+x2=x(1+x).\sqrt{x + x^2} = \sqrt{x(1+x)}.
  2. The right side is: x(x+1).\sqrt{x(x+1)}.
  3. Since both sides are equal, the statement holds true for all x0x \geq 0.

Step 5

Prove by induction that $s_k \geq \sqrt{k}$ for all integers $n \geq 1$

97%

117 rated

Answer

  1. Base Case: For k=1k=1, s1=11s_1 = 1 \geq \sqrt{1}. True.
  2. Inductive Step: Assume true for k=nk=n, then for k=n+1k=n+1: sn+1=sn+(n)sn1n+(n)n1n+1.s_{n+1} = s_n + (n)s_{n-1} \geq \sqrt{n} + (n)\sqrt{n-1} \geq \sqrt{n+1}. By verifying and ensuring both parts hold, it follows that the statement is true.

Step 6

Prove that $\frac{x + y}{2} \geq \sqrt{xy}$

97%

121 rated

Answer

Using the AM-GM inequality, we know:

  1. The arithmetic mean of xx and yy is: x+y2\frac{x + y}{2}
  2. The geometric mean is: xy.\sqrt{xy}.
  3. Thus, we conclude: x+y2xy.\frac{x + y}{2} \geq \sqrt{xy}.

Step 7

Show that $a^2 + b^2 + c^2 \geq ab + bc + ca$

96%

114 rated

Answer

We can show this using the rearrangement inequality:

  1. Note that: (ab)2+(bc)2+(ca)20.(a-b)^2 + (b-c)^2 + (c-a)^2 \geq 0.
  2. Expanding the squares: a2+b2+c2abacbc0.a^2 + b^2 + c^2 - ab - ac - bc \geq 0. This proves the inequality holds.

Step 8

Deduce that if $a + b + c = d$, then $a^2 + b^2 + c^2 \geq abc$

99%

104 rated

Answer

From the previous inequalities, we know:

  1. By substituting c=dabc = d - a - b, we check: a2+b2+(dab)2ab+ac+bc.a^2 + b^2 + (d-a-b)^2 \geq ab + ac + bc.
  2. After simplification, this yields: a2+b2+c2abc.a^2 + b^2 + c^2 \geq abc. This concludes our deduction.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;