Photo AI

The complex numbers $z = 2e^{i\frac{\pi}{2}}$ and $w = 6e^{i\frac{\pi}{6}}$ are given - HSC - SSCE Mathematics Extension 2 - Question 11 - 2021 - Paper 1

Question icon

Question 11

The-complex-numbers-$z-=-2e^{i\frac{\pi}{2}}$-and-$w-=-6e^{i\frac{\pi}{6}}$-are-given-HSC-SSCE Mathematics Extension 2-Question 11-2021-Paper 1.png

The complex numbers $z = 2e^{i\frac{\pi}{2}}$ and $w = 6e^{i\frac{\pi}{6}}$ are given. Find the value of $zw$, giving the answer in the form $re^{i\theta}$. (b) ... show full transcript

Worked Solution & Example Answer:The complex numbers $z = 2e^{i\frac{\pi}{2}}$ and $w = 6e^{i\frac{\pi}{6}}$ are given - HSC - SSCE Mathematics Extension 2 - Question 11 - 2021 - Paper 1

Step 1

Find the value of $zw$

96%

114 rated

Answer

To find zwzw, we compute:

zw=(2eiπ2)(6eiπ6)=12ei(π2+π6)zw = (2e^{i\frac{\pi}{2}})(6e^{i\frac{\pi}{6}}) = 12e^{i(\frac{\pi}{2} + \frac{\pi}{6})}

Calculating the argument:

π2+π6=3π6+π6=4π6=2π3\frac{\pi}{2} + \frac{\pi}{6} = \frac{3\pi}{6} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3}

Thus, the value of zwzw is:

zw=12ei2π3zw = 12e^{i\frac{2\pi}{3}}

Step 2

Find $\sum_{n=1}^{5}(i)^{n}$

99%

104 rated

Answer

The powers of ii cycle every four:

  • i1=ii^{1} = i
  • i2=1i^{2} = -1
  • i3=ii^{3} = -i
  • i4=1i^{4} = 1

Thus:

n=15(i)n=i+(1)+(i)+1+i\sum_{n=1}^{5}(i)^{n} = i + (-1) + (-i) + 1 + i

Combining:

=(ii+11+i)=i= (i - i + 1 - 1 + i) = i

Final result:

n=15(i)n=i\sum_{n=1}^{5}(i)^{n} = i

Step 3

Find the angle between the vectors $\mathbf{a}$ and $\mathbf{b}$

96%

101 rated

Answer

To find the angle θ\theta between two vectors, we use the formula:

cos(θ)=abab\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \, ||\mathbf{b}||}

Calculating the dot product:

ab=2(3)+4(1)=6+4=2\mathbf{a} \cdot \mathbf{b} = 2(-3) + 4(1) = -6 + 4 = -2

Calculating the magnitudes:

a=22+42=4+16=20=25||\mathbf{a}|| = \sqrt{2^{2} + 4^{2}} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} b=(3)2+12=9+1=10||\mathbf{b}|| = \sqrt{(-3)^{2} + 1^{2}} = \sqrt{9 + 1} = \sqrt{10}

Substituting into the cosine formula:

cos(θ)=2(25)(10)=2250=150=152\cos(\theta) = \frac{-2}{(2\sqrt{5})(\sqrt{10})} = \frac{-2}{2\sqrt{50}} = \frac{-1}{\sqrt{50}} = -\frac{1}{5\sqrt{2}}

Using a calculator, find:

θ=arccos(152)\theta = \arccos\left(-\frac{1}{5\sqrt{2}}\right)

Calculating this yields an angle of approximately 118.7118.7 degrees (correct to 1 decimal place).

Step 4

Find the two square roots of $-i$

98%

120 rated

Answer

We can express i-i in polar form as:

i=eiπ2-i = e^{-i\frac{\pi}{2}}

To find the square roots, we need:

i=eiπ4=12i12\sqrt{-i} = e^{-i\frac{\pi}{4}} = \frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}

Also, the other root will be:

i=eiπ4+iπ=ei3π4=12+i12\sqrt{-i} = e^{-i\frac{\pi}{4} + i\pi} = e^{i\frac{3\pi}{4}} = -\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}

Hence, the two square roots are:

x+iy=12i12and12+i12x + iy = \frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}} \quad \text{and} \quad -\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}

Step 5

Solve $z^{2} + 2z + 1 + i = 0$

97%

117 rated

Answer

Using the quadratic formula:

z=b±b24ac2az = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}

Substituting a=1a = 1, b=2b = 2, and c=1+ic = 1 + i:

z=2±(2)24(1)(1+i)2(1)z = \frac{-2 \pm \sqrt{(2)^{2} - 4(1)(1 + i)}}{2(1)}

=2±4(4+4i)2=2±4i2= \frac{-2 \pm \sqrt{4 - (4 + 4i)}}{2} = \frac{-2 \pm \sqrt{-4i}}{2}

This requires evaluating \ rac2±22eiπ42\ rac{-2 \pm 2\sqrt{2}e^{-i\frac{\pi}{4}}}{2} resulting in:

z=1±2eiπ4z = -1 \pm \sqrt{2}e^{-i\frac{\pi}{4}}

Step 6

Find $\frac{z}{w}$ in Cartesian form

97%

121 rated

Answer

Given z=5+iz = 5 + i and w=24iw = 2 - 4i, we can find:

zw=5+i24i\frac{z}{w} = \frac{5 + i}{2 - 4i}

To simplify, multiply by the conjugate of the denominator:

=(5+i)(2+4i)(24i)(2+4i)=10+20i+2i+4i24+16= \frac{(5 + i)(2 + 4i)}{(2 - 4i)(2 + 4i)} = \frac{10 + 20i + 2i + 4i^{2}}{4 + 16} =10+22i420=6+22i20=310+i1110= \frac{10 + 22i - 4}{20} = \frac{6 + 22i}{20} = \frac{3}{10} + i\frac{11}{10}

Thus, the answer is:

zw=310+i1110\frac{z}{w} = \frac{3}{10} + i\frac{11}{10}

Step 7

Express $\frac{3x^{2} - 5}{(x - 2)(x^{2} + x + 1)}$ as a sum of partial fractions

96%

114 rated

Answer

We set:

3x25(x2)(x2+x+1)=Ax2+Bx+Cx2+x+1\frac{3x^{2} - 5}{(x - 2)(x^{2} + x + 1)} = \frac{A}{x - 2} + \frac{Bx + C}{x^{2} + x + 1}

Multiplying through by the denominator:

3x25=A(x2+x+1)+(Bx+C)(x2)3x^{2} - 5 = A(x^{2} + x + 1) + (Bx + C)(x - 2)

Equating coefficients:

For x2x^{2}: 3=A+B3 = A + B For x1x^{1}: 0=A2B+C0 = A - 2B + C For x0x^{0}: 5=A2C-5 = A - 2C

Solving these will provide the values of AA, BB, and CC.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;