Photo AI

Let $z=3+i$ and $w=2-5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1

Question icon

Question 2

Let-$z=3+i$-and-$w=2-5i$-HSC-SSCE Mathematics Extension 2-Question 2-2006-Paper 1.png

Let $z=3+i$ and $w=2-5i$. Find, in the form $x+iy$. (i) $z^2$ (ii) $zw$ (iii) $\frac{w}{z}$ (i) Express $\sqrt{3}-i$ in modulus-argument form. (ii) Express $\le... show full transcript

Worked Solution & Example Answer:Let $z=3+i$ and $w=2-5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1

Step 1

(i) $z^2$

96%

114 rated

Answer

To calculate z2z^2, substitute z=3+iz = 3 + i into the equation:

z2=(3+i)2=32+2(3)(i)+i2=9+6i1=8+6iz^2 = (3+i)^2 = 3^2 + 2(3)(i) + i^2 = 9 + 6i - 1 = 8 + 6i

Step 2

(ii) $zw$

99%

104 rated

Answer

To find zwzw, multiply z=3+iz = 3 + i with w=25iw = 2 - 5i:

zw=(3+i)(25i)=615i+2i+5=1113izw = (3+i)(2-5i) = 6 - 15i + 2i + 5 = 11 - 13i

Step 3

(iii) $\frac{w}{z}$

96%

101 rated

Answer

To find wz\frac{w}{z}, you divide ww by zz:

wz=25i3+i\frac{w}{z} = \frac{2 - 5i}{3 + i}

First, multiply the numerator and the denominator by the conjugate of the denominator:

=(25i)(3i)(3+i)(3i)=62i15i+59+1=1117i10=1.11.7i= \frac{(2 - 5i)(3 - i)}{(3 + i)(3 - i)} = \frac{6 - 2i - 15i + 5}{9 + 1} = \frac{11 - 17i}{10} = 1.1 - 1.7i

Step 4

(i) Express $\sqrt{3}-i$ in modulus-argument form.

98%

120 rated

Answer

First, calculate the modulus:

r=3i=(3)2+(1)2=3+1=2r = |\sqrt{3} - i| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = 2

Next, calculate the argument:

θ=arg(3i)=tan1(13)=π6\theta = \arg(\sqrt{3} - i) = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}

Thus, the modulus-argument form is:

3i=2(cos(π6)+isin(π6))\sqrt{3} - i = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)

Step 5

(ii) Express $\left(\sqrt{3}-i\right)$ in modulus-argument form.

97%

117 rated

Answer

This is already done in part (i), but restating:

3i=2(cos(π6)+isin(π6))\sqrt{3} - i = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)

Step 6

(iii) Hence express $\left(\sqrt{3}-i\right)^7$ in the form $x+iy$.

97%

121 rated

Answer

Using De Moivre's Theorem:

(3i)7=27(cos(7π6)+isin(7π6))=128(cos(7π6)+isin(7π6))\left(\sqrt{3}-i\right)^7 = 2^7\left(\cos\left(-\frac{7\pi}{6}\right) + i\sin\left(-\frac{7\pi}{6}\right)\right) = 128\left(\cos\left(-\frac{7\pi}{6}\right) + i\sin\left(-\frac{7\pi}{6}\right)\right)

Now, calculate:

=128(3212i)=64364i= 128\left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = -64\sqrt{3} - 64i

Step 7

Find, in modulus-argument form, all solutions of $z^3 = -1$.

96%

114 rated

Answer

Rewriting 1-1 in modulus-argument form:

1=1(cosπ+isinπ)-1 = 1\left(\cos\pi + i\sin\pi\right)

Using De Moivre's Theorem, we find the cube roots:

  1. The principal root:
    • z1=1(cosπ3+isinπ3)=12+32iz_1 = 1\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = \frac{1}{2} + \frac{\sqrt{3}}{2}i
  2. The other roots are:
    • z2=1(cos(π+2π3)+isin(π+2π3))z_2 = 1\left(\cos\left(\frac{\pi + 2\pi}{3}\right) + i\sin\left(\frac{\pi + 2\pi}{3}\right)\right) and derive these further.

Step 8

(i) Write down the complex number corresponding to the centre of the ellipse.

99%

104 rated

Answer

The equation can be rewritten as:

z(53i)=10|z - (5 - 3i)| = 10

The center of the ellipse is at the point (5,3)(5, 3) or in complex form: 5+3i.5 + 3i.

Step 9

(ii) Sketch the ellipse, and state the lengths of the major and minor axes.

96%

101 rated

Answer

In the equation given, the distance from the center to the focus is denoted as a=10a = 10 and the distance between the foci is 2b2b where bb can be derived from the distances:

Thus, the major axis length is 2020 (for xx) and the minor axis length can be derived from the standard ellipse equation.

Simply speaking, the sketch will portray an ellipse centered at (5,3)(5, 3).

Step 10

(iii) Write down the range of $\arg(z)$ for complex numbers $z$ corresponding to points on the ellipse.

98%

120 rated

Answer

The range of arg(z)\arg(z) will span from the angle corresponding to the leftmost point to the angle corresponding to the rightmost point.

Thus: [tan1(3b5a),tan1(3+b5+a)][\tan^{-1}(\frac{3-b}{5-a}), \tan^{-1}(\frac{3+b}{5+a})] where (a,b)(a, b) represents the ellipse dimensions.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;