Photo AI

Let $z = oot{3} - i.$ (i) Express $z$ in modulus-argument form - HSC - SSCE Mathematics Extension 2 - Question 11 - 2016 - Paper 1

Question icon

Question 11

Let-$z-=--oot{3}---i.$--(i)-Express-$z$-in-modulus-argument-form-HSC-SSCE Mathematics Extension 2-Question 11-2016-Paper 1.png

Let $z = oot{3} - i.$ (i) Express $z$ in modulus-argument form. (ii) Show that $z^6$ is real. (iii) Find a positive integer $n$ such that $z^n$ is purely imagina... show full transcript

Worked Solution & Example Answer:Let $z = oot{3} - i.$ (i) Express $z$ in modulus-argument form - HSC - SSCE Mathematics Extension 2 - Question 11 - 2016 - Paper 1

Step 1

Express $z$ in modulus-argument form.

96%

114 rated

Answer

To express zz in modulus-argument form, we first calculate the modulus:

oot{3}\text{ is }\sqrt{ oot{3}^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2.$$ Next, we find the argument: $$\text{Arg}(z) = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}.$$ Therefore, in modulus-argument form: $$z = 2\left(\cos\left(-\frac{\pi}{6}\right) + i \sin\left(-\frac{\pi}{6}\right)\right).$$

Step 2

Show that $z^6$ is real.

99%

104 rated

Answer

To show that z6z^6 is real, we use the formula for powers in modulus-argument form:

zn=zn(cos(nArg(z))+isin(nArg(z))).z^n = |z|^n \left(\cos(n \cdot \text{Arg}(z)) + i \sin(n \cdot \text{Arg}(z))\right).

For n=6n=6:

z6=26(cos(6π6)+isin(6π6))=64(cos(π)+isin(π))=64(1+0i)=64,z^6 = 2^6 \left(\cos\left(6 \cdot -\frac{\pi}{6}\right) + i \sin\left(6 \cdot -\frac{\pi}{6}\right)\right) = 64\left(\cos(-\pi) + i \sin(-\pi)\right) = 64(-1 + 0i) = -64, which is real.

Step 3

Find a positive integer $n$ such that $z^n$ is purely imaginary.

96%

101 rated

Answer

For znz^n to be purely imaginary, the cosine term must equal zero. This occurs when:

nπ6=π2+kπ, for any integer k.n \cdot -\frac{\pi}{6} = \frac{\pi}{2} + k\pi, \text{ for any integer } k.

Solving:

n=3+6k.n = -3 + 6k.

For a positive integer, let k=1k = 1:
n=3+6(1)=3.n = -3 + 6(1) = 3.

Thus, n=3n=3 is a solution.

Step 4

Find \(\int x e^{-2x} \, dx.\)

98%

120 rated

Answer

To find (\int x e^{-2x} , dx,) we can use integration by parts. Let:

  • u=xu = x, so du=dxdu = dx
  • dv=e2xdxdv = e^{-2x} dx, so v=12e2x.v = -\frac{1}{2} e^{-2x}.

Using the integration by parts formula:

udv=uvvdu,\int u \, dv = uv - \int v \, du,

we have:

xe2xdx=12xe2x12e2xdx\int x e^{-2x} \, dx = -\frac{1}{2} x e^{-2x} - \int -\frac{1}{2} e^{-2x} \, dx

=12xe2x+14e2x+C.= -\frac{1}{2} x e^{-2x} + \frac{1}{4} e^{-2x} + C.

Step 5

Find \(\frac{dy}{dx}\) for the curve given by $x^3 + y^3 = 2xy$.

97%

117 rated

Answer

To find (\frac{dy}{dx}), we differentiate implicitly:

ddx(x3)+ddx(y3)=ddx(2xy).\frac{d}{dx}(x^3) + \frac{d}{dx}(y^3) = \frac{d}{dx}(2xy).

This gives:

3x2+3y2dydx=2(y+xdydx).3x^2 + 3y^2 \frac{dy}{dx} = 2\left( y + x \frac{dy}{dx} \right).

Rearranging gives:

3y2dydx2xdydx=2y3x2,3y^2 \frac{dy}{dx} - 2x \frac{dy}{dx} = 2y - 3x^2,

dydx(3y22x)=2y3x2,\frac{dy}{dx}(3y^2 - 2x) = 2y - 3x^2,

thus:

dydx=2y3x23y22x.\frac{dy}{dx} = \frac{2y - 3x^2}{3y^2 - 2x}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;