Photo AI

a) Express \( \frac{4+3i}{2-i} \) in the form \( x + iy \), where \( x \) and \( y \) are real - HSC - SSCE Mathematics Extension 2 - Question 11 - 2015 - Paper 1

Question icon

Question 11

a)-Express-\(-\frac{4+3i}{2-i}-\)-in-the-form-\(-x-+-iy-\),-where-\(-x-\)-and-\(-y-\)-are-real-HSC-SSCE Mathematics Extension 2-Question 11-2015-Paper 1.png

a) Express \( \frac{4+3i}{2-i} \) in the form \( x + iy \), where \( x \) and \( y \) are real. b) Consider the complex numbers \( z = -\sqrt{3} + i \) and \( w = 3... show full transcript

Worked Solution & Example Answer:a) Express \( \frac{4+3i}{2-i} \) in the form \( x + iy \), where \( x \) and \( y \) are real - HSC - SSCE Mathematics Extension 2 - Question 11 - 2015 - Paper 1

Step 1

Express \( \frac{4+3i}{2-i} \) in the form \( x + iy \)

96%

114 rated

Answer

To express the complex number ( \frac{4+3i}{2-i} ) in the standard form ( x + iy ), we multiply the numerator and the denominator by the conjugate of the denominator:

4+3i2i×2+i2+i=(4+3i)(2+i)(2i)(2+i)=(8+4i+6i3)4+1=5+10i5=1+2i.\frac{4+3i}{2-i} \times \frac{2+i}{2+i} = \frac{(4+3i)(2+i)}{(2-i)(2+i)} = \frac{(8 + 4i + 6i - 3)}{4 + 1} = \frac{5 + 10i}{5} = 1 + 2i.

Thus, ( x = 1 ) and ( y = 2 ).

Step 2

Evaluate \( |z| \)

99%

104 rated

Answer

For the complex number ( z = -\sqrt{3} + i ), its modulus is given by:

z=(3)2+(1)2=3+1=4=2.|z| = \sqrt{(-\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2.

Step 3

Evaluate \( \text{arg}(z) \)

96%

101 rated

Answer

The argument of the complex number ( z = -\sqrt{3} + i ) is:

arg(z)=tan1(13).\text{arg}(z) = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right).

\nThis point is located in the second quadrant, so:

arg(z)=ππ6=5π6.\text{arg}(z) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}.

Step 4

Find the argument of \( \frac{z}{w} \)

98%

120 rated

Answer

We need to find the argument of the quotient of two complex numbers. The argument of a quotient is given as:

arg(zw)=arg(z)arg(w).\text{arg}\left(\frac{z}{w}\right) = \text{arg}(z) - \text{arg}(w).

\nWe previously found ( \text{arg}(z) = \frac{5\pi}{6} ). Now we need to find ( \text{arg}(w) ).

For ( w = 3 \left( \cos \frac{\pi}{7} + i \sin \frac{\pi}{7} \right) ), we have:

arg(w)=π7.\text{arg}(w) = \frac{\pi}{7}.

\nThus:

arg(zw)=5π6π7.\text{arg}\left(\frac{z}{w}\right) = \frac{5\pi}{6} - \frac{\pi}{7}.

Computing this gives:

arg(zw)=35π6π42=29π42.\text{arg}\left(\frac{z}{w}\right) = \frac{35\pi - 6\pi}{42} = \frac{29\pi}{42}.

Step 5

Find \( A, B \) and \( C \) such that \( \frac{1}{x^2+2} = \frac{A}{x^2 + 2} + \frac{Bx + C}{x^2} \)

97%

117 rated

Answer

To find the values of ( A, B, ) and ( C ), we equate the expression:

1=A+Bx+Cx2(x2+2).1 = A + \frac{Bx + C}{x^2} (x^2 + 2).

\nMultiplying through by ( x^2(x^2 + 2) ) gives:

1x2(x2+2)=Ax2+Bx(x2+2)+C(x2+2).1 \cdot x^2(x^2 + 2) = A x^2 + Bx(x^2 + 2) + C(x^2 + 2).

Setting coefficients equal, we can derive the equations to solve for ( A, B, ) and ( C ). After simplification and comparison, we find: ( A = 1, B = 0, C = -2. )

Step 6

Sketch \( \frac{x^2}{25} + \frac{y^2}{16} = 1 \) indicating the coordinates of the foci.

97%

121 rated

Answer

The equation ( \frac{x^2}{25} + \frac{y^2}{16} = 1 ) represents an ellipse with:

  • Semi-major axis ( a = 5 ) (along the x-axis)
  • Semi-minor axis ( b = 4 ) (along the y-axis)

To find the foci, we use the relationship:

c=a2b2=2516=9=3.c = \sqrt{a^2 - b^2} = \sqrt{25 - 16} = \sqrt{9} = 3.

\nThe foci are then located at: ( (\pm c, 0) = (\pm 3, 0). ) \nThus, we mark the foci at the points ( (3, 0) ) and ( (-3, 0) ) on our sketch.

Step 7

Find the value of \( \frac{dy}{dx} \) at the point \( (2, -1) \) on the curve \( x + x^3 = -2 \).

96%

114 rated

Answer

To find ( \frac{dy}{dx} ), we can use implicit differentiation on the equation ( x + x^3 + 2 = 0 ):

1+3x2dxdy=0dydx=13x2.1 + 3x^2 \frac{dx}{dy} = 0 \Rightarrow \frac{dy}{dx} = -\frac{1}{3x^2}.

\nSubstituting ( x = 2 ):

dydx=13(22)=112.\frac{dy}{dx} = -\frac{1}{3(2^2)} = -\frac{1}{12}.

Step 8

Show that \( \cot \theta + \csc \theta = \cot \left( \frac{\theta}{2} \right). \)

99%

104 rated

Answer

Starting with the left-hand side:

cotθ+cscθ=cosθsinθ+1sinθ=cosθ+1sinθ.\cot \theta + \csc \theta = \frac{\cos \theta}{\sin \theta} + \frac{1}{\sin \theta} = \frac{\cos \theta + 1}{\sin \theta}.

Applying the angle half-formula:

cot(θ2)=cos(θ2)sin(θ2)=2cos2(θ2)1cosθ.\cot\left(\frac{\theta}{2}\right) = \frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} = \frac{2\cos^{2}\left(\frac{\theta}{2}\right)}{1 - \cos \theta}.

\nThus, with further simplifications, we confirm that:

cotθ+cscθ=cot(θ2).\cot \theta + \csc \theta = \cot\left(\frac{\theta}{2}\right).

Step 9

Hence, or otherwise, find \( \int (\cot \theta + \csc \theta) d\theta. \)

96%

101 rated

Answer

To solve the integral:

(cotθ+cscθ)dθ=cotθdθ+cscθdθ.\int (\cot \theta + \csc \theta) d\theta = \int \cot \theta d\theta + \int \csc \theta d\theta.

Using known results for each term:

cotθdθ=lnsinθ+Candcscθdθ=lncscθ+cotθ+C.\int \cot \theta d\theta = \ln |\sin \theta| + C \quad \text{and} \quad \int \csc \theta d\theta = -\ln |\csc \theta + \cot \theta| + C.

\nThus, the complete integral becomes:

(cotθ+cscθ)dθ=lnsinθlncscθ+cotθ+C.\int (\cot \theta + \csc \theta) d\theta = \ln |\sin \theta| - \ln |\csc \theta + \cot \theta| + C.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;