Photo AI

Let $\alpha = \cos\theta + i \sin\theta$, where $0 < \theta < 2\pi$ - HSC - SSCE Mathematics Extension 2 - Question 16 - 2017 - Paper 1

Question icon

Question 16

Let-$\alpha-=-\cos\theta-+-i-\sin\theta$,-where-$0-<-\theta-<-2\pi$-HSC-SSCE Mathematics Extension 2-Question 16-2017-Paper 1.png

Let $\alpha = \cos\theta + i \sin\theta$, where $0 < \theta < 2\pi$. (i) Show that $\alpha^k + \alpha^{k*} = 2 \cos k\theta$, for any integer $k$. Let $C = \alpha^... show full transcript

Worked Solution & Example Answer:Let $\alpha = \cos\theta + i \sin\theta$, where $0 < \theta < 2\pi$ - HSC - SSCE Mathematics Extension 2 - Question 16 - 2017 - Paper 1

Step 1

(i) Show that $\alpha^k + \alpha^{k*} = 2 \cos k\theta$, for any integer $k$.

96%

114 rated

Answer

Using De Moivre's theorem, we have:

αk=(cosθ+isinθ)k=cos(kθ)+isin(kθ)\alpha^k = (\cos\theta + i\sin\theta)^k = \cos(k\theta) + i\sin(k\theta)

Similarly,

αk=(cosθisinθ)k=cos(kθ)isin(kθ)\alpha^{k*} = (\cos\theta - i\sin\theta)^k = \cos(k\theta) - i\sin(k\theta)

Adding these two results yields:

αk+αk=2cos(kθ)\alpha^k + \alpha^{k*} = 2\cos(k\theta)

Step 2

(ii) By summing the series, prove that $C = \frac{\alpha^{n} - (\alpha + 1)(\alpha^{(n + 1)})}{(1 - \alpha)(1 - \alpha)}$.

99%

104 rated

Answer

To find CC, rewrite it as:

C=1+k=1nαk=1+(αn+αn1++α)C = 1 + \sum_{k=1}^{n} \alpha^k = 1 + (\alpha^n + \alpha^{n-1} + \cdots + \alpha)

This is a geometric series with first term 1 and ratio α\alpha, which sums to:

C=1αn+11αC = \frac{1 - \alpha^{n + 1}}{1 - \alpha}

Now substitute from part (i) and simplify to reach:

C=αn+1(1+α)(αn)(1α)(1α)C = \frac{\alpha^{n+1} - (1 + \alpha)(\alpha^n)}{(1 - \alpha)(1 - \alpha)}

Step 3

(iii) Deduce, from parts (i) and (ii), that $1 + 2(\cos 0 + \cos 2\theta + \cdots + \cos n\theta)$.

96%

101 rated

Answer

From part (i), we have:

1+2(cos0+cos2θ++cosnθ)=cosnθ(cos(n+1)θ1cosθ)1 + 2(\cos 0 + \cos 2\theta + \cdots + \cos n\theta) = \cos n\theta(\frac{\cos(n + 1)\theta}{1 - \cos \theta})

Since cos0=1\cos 0 = 1, the series can be simplified to the deduced result with correct substitutions from previous results.

Step 4

(iv) Show that $\cos \frac{\pi}{n} + \cos \frac{2\pi}{n} + \cos \frac{3\pi}{n}$ is independent of $n$.

98%

120 rated

Answer

To show independence from nn, observe that:

Using double angle formulas, we get: S=k=1mcos(2πkn)=12[sin((m+1)πn)sin(πn)], S = \sum_{k=1}^{m} \cos\left(\frac{2\pi k}{n}\right) = \frac{1}{2} \left[\frac{\sin((m+1)\frac{\pi}{n})}{\sin(\frac{\pi}{n})} \right], which is constant for different integer nn. Therefore, it demonstrates independence with respect to nn.

Step 5

(b) The hyperbola with equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ has eccentricity 2.

97%

117 rated

Answer

Using the formula for eccentricity e=cae = \frac{c}{a} for a hyperbola, where c=a2+b2c = \sqrt{a^2 + b^2}:

Given e=2e = 2, we have: 2=a2+b2a4a2=a2+b23a2=b2b=3a. 2 = \frac{\sqrt{a^2 + b^2}}{a} \Rightarrow 4a^2 = a^2 + b^2 \Rightarrow 3a^2 = b^2 \Rightarrow b = \sqrt{3}a.

Also, from the given vertex distance, a=1a = 1, thus giving possible values: b=3b = \sqrt{3}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;