Photo AI

Question 6 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 6 - 2003 - Paper 1

Question icon

Question 6

Question-6-(15-marks)-Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 2-Question 6-2003-Paper 1.png

Question 6 (15 marks) Use a SEPARATE writing booklet. (a) (i) Prove the identity $ ext{cos}(a + b) + ext{cos}(a - b) = 2 ext{cos} a ext{cos} b$. (ii) Hence fi... show full transcript

Worked Solution & Example Answer:Question 6 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 6 - 2003 - Paper 1

Step 1

Prove the identity $ ext{cos}(a + b) + ext{cos}(a - b) = 2 ext{cos} a ext{cos} b$

96%

114 rated

Answer

To prove the identity, we start with the left-hand side:

extcos(a+b)+extcos(ab) ext{cos}(a + b) + ext{cos}(a - b)

Using the sum-to-product identities, we can write:

ext{cos}(a + b) = rac{e^{i(a+b)} + e^{-i(a+b)}}{2} ext{cos}(a - b) = rac{e^{i(a-b)} + e^{-i(a-b)}}{2}

Combining these gives:

= rac{e^{ia} (e^{ib} + e^{-ib}) + e^{-ia} (e^{-ib} + e^{ib})}{2} = ext{cos} a ext{cos} b.

Step 2

Hence find $\int \text{cos} 3x \text{cos} 2x \, dx$

99%

104 rated

Answer

Using the identity from part (i):

cos3xcos2x=12(cos(3x+2x)+cos(3x2x))=12(cos(5x)+cos(x)).\text{cos} 3x \text{cos} 2x = \frac{1}{2} \left( \text{cos}(3x + 2x) + \text{cos}(3x - 2x) \right) = \frac{1}{2} \left( \text{cos}(5x) + \text{cos}(x) \right).

Thus,

cos3xcos2xdx=12(cos(5x)dx+cos(x)dx).\int \text{cos} 3x \text{cos} 2x \, dx = \frac{1}{2} \left( \int \text{cos}(5x) \, dx + \int \text{cos}(x) \, dx \right).

Integrating gives:

=12(15sin(5x)+sin(x)+C)=110sin(5x)+12sin(x)+C.= \frac{1}{2} \left( \frac{1}{5} \text{sin}(5x) + \text{sin}(x) + C \right) = \frac{1}{10} \text{sin}(5x) + \frac{1}{2} \text{sin}(x) + C.

Step 3

Find $s_3$ and $s_4$

96%

101 rated

Answer

Given s1=1s_1 = 1 and s2=2s_2 = 2, we can find:

  • For s3s_3:

s3=s2+(31)s1=2+21=4.s_3 = s_2 + (3 - 1)s_1 = 2 + 2 \cdot 1 = 4.

  • For s4s_4:

s4=s3+(41)s2=4+32=10.s_4 = s_3 + (4 - 1)s_2 = 4 + 3 \cdot 2 = 10.

Step 4

Prove that $\sqrt{x + x^2} = \sqrt{x(x + 1)}$ for all real numbers $x \geq 0$

98%

120 rated

Answer

Starting with the left side:

Since $x \geq 0$, we can safely say: $$\sqrt{x(1 + x)} = \sqrt{x(x + 1)}.$$ Thus the equality is confirmed.

Step 5

Prove by induction that $s_n \geq \sqrt{n}$ for all integers $n \geq 1$

97%

117 rated

Answer

Base case: For n=1n=1, s1=11s_1 = 1 \geq \sqrt{1}.

Inductive step: Assume true for n=kn=k: skks_k \geq \sqrt{k}. Then for n=k+1n=k+1:

\geq \sqrt{k} + (k)\sqrt{k-1} \ \geq \sqrt{k + 1}.$$ Thus the statement holds for $n=k+1$.

Step 6

Prove that $\frac{x+y}{2} \geq \sqrt{xy}$

97%

121 rated

Answer

This is proven by applying the AM-GM inequality:

x+y2xy\frac{x+y}{2} \geq \sqrt{xy} is equivalent to x+y2xyx + y \geq 2\sqrt{xy}.

Rearranging gives:

(xy)20,(x - y)^2 \geq 0,

which is always true.

Step 7

Prove that $a^2 + b^2 + c^2 \geq ab + ac + bc$

96%

114 rated

Answer

Using the three-variable version of Cauchy-Schwarz inequality:

(a2+b2+c2)(1+1+1)(a+b+c)2,(a^2 + b^2 + c^2)(1+1+1) \geq (a + b + c)^2,

This proves:

a2+b2+c2ab+ac+bc.a^2 + b^2 + c^2 \geq ab + ac + bc.

Step 8

Show that $a^2b^2 + c^2 \geq 2ab(a+b)$

99%

104 rated

Answer

By applying AM-GM on a2b2a^2b^2 and c2c^2:

a2b2+c22a2b2c2=abc2=2ab(a+b).\frac{a^2b^2 + c^2}{2} \geq \sqrt{a^2b^2 \cdot c^2} = ab\sqrt{c^2} = 2ab(a + b).

Step 9

Deduce that if $a + b + c = d$, then $a^2 + b^2 + c^2 \geq ab + ac + bc$

96%

101 rated

Answer

Replacing cc with dabd - a - b in our previous inequality,

a2+b2+(dab)2ab+ac+bc,a^2 + b^2 + (d - a - b)^2 \geq ab + ac + bc,

Confirms that:

a2+b2+c2ab+ac+bc.a^2 + b^2 + c^2 \geq ab + ac + bc.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;