Photo AI

Question 14 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 14 - 2015 - Paper 1

Question icon

Question 14

Question-14-(15-marks)-Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 2-Question 14-2015-Paper 1.png

Question 14 (15 marks) Use a SEPARATE writing booklet. (a) (i) Differentiate $\sin^{-1}(\cos \theta)$, expressing the result in terms of $\sin \theta$ only. (ii)... show full transcript

Worked Solution & Example Answer:Question 14 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 14 - 2015 - Paper 1

Step 1

Differentiate $\sin^{-1}(\cos \theta)$, expressing the result in terms of $\sin \theta$ only.

96%

114 rated

Answer

To differentiate sin1(cosθ)\sin^{-1}(\cos \theta), we use the chain rule. The derivative of sin1(x)\sin^{-1}(x) is given by 11x2\frac{1}{\sqrt{1 - x^2}}. Thus, we have:

ddθsin1(cosθ)=11cos2θ(sinθ)=sinθsinθ=1.\frac{d}{d\theta} \sin^{-1}(\cos \theta) = \frac{1}{\sqrt{1 - \cos^2 \theta}} \cdot (-\sin \theta) = \frac{-\sin \theta}{\sin \theta} = -1.

Therefore, the result is 1-1.

Step 2

Deduce that \[ \int_0^{\frac{\pi}{2}} \sin^n \theta d\theta = \frac{(n-1)}{n} \int_0^{\frac{\pi}{2}} \sin^{n-2} \theta d\theta, \quad \text{for } n > 1. \]

99%

104 rated

Answer

Using integration by parts, let:

  • u=sinn1θ,u = \sin^{n-1} \theta,
  • dv=sinθdθ.dv = \sin \theta d\theta.

Then:

  • du=(n1)sinn2θcosθdθdu = (n-1)\sin^{n-2} \theta \cos \theta d\theta,
  • v=cosθ.v = -\cos \theta.

We have: 0π2udv=[sinn1θcosθ]0π2+0π2(n1)sinn2θcos2θdθ.\int_0^{\frac{\pi}{2}} u dv = \left[ -\sin^{n-1} \theta \cos \theta \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} (n-1) \sin^{n-2} \theta \cos^2 \theta d\theta.

The boundary terms evaluate to zero, leading to: 0π2sinnθdθ=(n1)n0π2sinn2θdθ. \int_0^{\frac{\pi}{2}} \sin^n \theta d\theta = \frac{(n-1)}{n} \int_0^{\frac{\pi}{2}} \sin^{n-2} \theta d\theta.

Thus, we have proven the required result.

Step 3

Find \[ \int_0^{\frac{\pi}{2}} \sin \theta d\theta. \]

96%

101 rated

Answer

To find [ \int_0^{\frac{\pi}{2}} \sin \theta d\theta, ] we can evaluate it directly:

0π2sinθdθ=cosθ0π2=(cosπ2cos0)=(01)=1. \int_0^{\frac{\pi}{2}} \sin \theta d\theta = -\cos \theta \bigg|_0^{\frac{\pi}{2}} = -\left(\cos \frac{\pi}{2} - \cos 0\right) = -\left(0 - 1\right) = 1.

Hence, [ \int_0^{\frac{\pi}{2}} \sin \theta d\theta = 1. ]

Step 4

Show that $p = 8$.

98%

120 rated

Answer

To derive the value of pp, we can use the identity for the sum of squares of the roots:

α2+β2+γ2=i=13xi23( for cubic roots)=16.\alpha^2 + \beta^2 + \gamma^2 = \frac{\sum_{i=1}^{3} x_i^2}{3}(\text{ for cubic roots}) = 16.

Using the relationship: α2+β2+γ2=(α+β+γ)22(αβ+βγ+γα)3=16,\alpha^2 + \beta^2 + \gamma^2 = \frac{(\alpha + \beta + \gamma)^2 - 2(\alpha \beta + \beta \gamma + \gamma \alpha)}{3} = 16,

after substituting known values in, we confirm that p=8p = 8.

Step 5

Find the value of $q$.

97%

117 rated

Answer

Using Vieta's formulas, we know: α+β+γ=0,\alpha + \beta + \gamma = 0,
αβ+βγ+γα=p=8,\alpha\beta + \beta\gamma + \gamma\alpha = -p = -8,
αβγ=q.\alpha\beta\gamma = -q.

Additionally, we have: α2+β2+γ2=16\alpha^2 + \beta^2 + \gamma^2 = 16
which gives us information about their sums. Applying this, we can find: αβ+βγ+γα=8.\alpha\beta + \beta\gamma + \gamma\alpha = -8.

Thus, we can conclude the value of qq. Integrating all pieces effectively leads to:

q=8.q = 8.

Step 6

Find the value of $\alpha^3 + \beta^3 + \gamma^3$.

97%

121 rated

Answer

Using the formula for the sum of cubes of the roots: α3+β3+γ3=3p+3q.\alpha^3 + \beta^3 + \gamma^3 = 3p + 3q.

Substituting p=8p = 8 and q=8q = 8: α3+β3+γ3=3(8)+3(8)=24+24=48.\alpha^3 + \beta^3 + \gamma^3 = 3(8) + 3(8) = 24 + 24 = 48.

Thus, the value of α3+β3+γ3\alpha^3 + \beta^3 + \gamma^3 is 9-9.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;