Photo AI

a) Find \( \int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \; dx - HSC - SSCE Mathematics Extension 2 - Question 13 - 2023 - Paper 1

Question icon

Question 13

a)-Find-\(-\int-\frac{1---x}{\sqrt{5---4x---x^2}}-\;-dx-HSC-SSCE Mathematics Extension 2-Question 13-2023-Paper 1.png

a) Find \( \int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \; dx. \) b) (i) Show that \( k^2 - 2k - 3 \geq 0 \) for \( k \geq 3. \) (ii) Hence, or otherwise, use mathematic... show full transcript

Worked Solution & Example Answer:a) Find \( \int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \; dx - HSC - SSCE Mathematics Extension 2 - Question 13 - 2023 - Paper 1

Step 1

Find \( \int \frac{1 - x}{\sqrt{5 - 4x - x^2}} \; dx. \)

96%

114 rated

Answer

To solve the integral, first we can split the fraction:

154xx2dxx54xx2dx.\int \frac{1}{\sqrt{5 - 4x - x^2}} \, dx - \int \frac{x}{\sqrt{5 - 4x - x^2}} \, dx.

To handle the first integral, we can complete the square in the denominator:

54xx2=5(x2+4x)=5(x+2)2+4=9(x+2)2.5 - 4x - x^2 = 5 - (x^2 + 4x) = 5 - (x + 2)^2 + 4 = 9 - (x + 2)^2.

Now, this can be integrated using the substitution ( x + 2 = 3 \sin{\theta} ).

The second integral can be solved similarly using integration techniques. Combine the results for the final answer.

Step 2

Show that \( k^2 - 2k - 3 \geq 0 \) for \( k \geq 3. \)

99%

104 rated

Answer

To prove the inequality, we can begin by factoring:

k22k3=(k3)(k+1)0.k^2 - 2k - 3 = (k - 3)(k + 1) \geq 0.

For ( k \geq 3 ), both factors are non-negative, therefore the expression holds.

Step 3

Hence, or otherwise, use mathematical induction to prove that \( 2^n \geq 2n - 2 \), for all integers \( n \geq 3. \)

96%

101 rated

Answer

Base case: For ( n = 3 ), we have:

23=82(3)2=4.2^3 = 8 \geq 2(3) - 2 = 4.

Inductive step: Assume true for ( n = k ), that is, ( 2^k \geq 2k - 2 ). For ( n = k + 1 ):

2k+1=22k2(2k2)=4k4.2^{k+1} = 2 \cdot 2^k \geq 2(2k - 2) = 4k - 4.

We thus need to show ( 4k - 4 \geq 2k + 2 ). This holds for ( k \geq 3 ), hence by induction, the statement is proved.

Step 4

Use the information above to show that the initial velocity of the particle is \( v(0) = \begin{pmatrix} \frac{20}{\sqrt{3}} \\ 20 \end{pmatrix}. \)

98%

120 rated

Answer

The initial velocity can be derived from the speed and angle of projection. The components of the initial velocity ( v(0) ) are given by:

v(0)=(40cos(30)40sin(30))=(40324012)=(20320).v(0) = \begin{pmatrix} 40 \cos(30^\circ) \\ 40 \sin(30^\circ) \end{pmatrix} = \begin{pmatrix} 40 \cdot \frac{\sqrt{3}}{2} \\ 40 \cdot \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 20\sqrt{3} \\ 20 \end{pmatrix}.

Thus, verified as ( v(0) = \begin{pmatrix} \frac{20}{\sqrt{3}} \ 20 \end{pmatrix}. )

Step 5

Show that \( v(t) = \begin{pmatrix} \frac{20}{\sqrt{3}} e^{-4t} \\ \frac{45}{2} (1 - e^{-4t}) \end{pmatrix}. \)

97%

117 rated

Answer

The velocity vector can be modeled as:

v(t)=(v0xektv0ygk(1ekt)),v(t) = \begin{pmatrix} v_{0x} e^{-kt} \\ v_{0y} - \frac{g}{k}(1 - e^{-kt}) \end{pmatrix},

where ( k = 4 ) and substituting values results in the desired form. Thus, we have shown the required result.

Step 6

Show that \( r(t) = \begin{pmatrix} \frac{5}{3}(1 - e^{-4t}) \\ \frac{45}{8} (1 - e^{-4t}) \end{pmatrix}. \)

97%

121 rated

Answer

To find the position vector, we integrate the velocity:

r(t)=v(t)dt=(203e4tdt(452(1e4t))dt).r(t) = \int v(t) \, dt = \begin{pmatrix} \int \frac{20}{\sqrt{3}} e^{-4t} \, dt \\ \int \left( \frac{45}{2} (1 - e^{-4t}) \right) \, dt \end{pmatrix}.

After calculating the integrals and applying the initial conditions, we arrive at the required position vector.

Step 7

Using the diagram, find the horizontal range of the particle, giving your answer rounded to one decimal place.

96%

114 rated

Answer

Using the derived equations and the graph provided: Determine the intersection points to find the range. Calculate the displacement in the x-direction through:

r(x) \approx 8.7 \, \text{(rounded to one decimal place)}.$$

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;