Photo AI

Let $z = 1 + 2i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Question icon

Question 2

Let-$z-=-1-+-2i$-and-$w-=-1-+-i$-HSC-SSCE Mathematics Extension 2-Question 2-2002-Paper 1.png

Let $z = 1 + 2i$ and $w = 1 + i$. Find, in the form $x + iy$, (i) $z w$ (ii) $\frac{1}{w}$ On an Argand diagram, shade in the region where the inequalities $0 ... show full transcript

Worked Solution & Example Answer:Let $z = 1 + 2i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Step 1

Find, in the form $x + iy$, (i) $z w$

96%

114 rated

Answer

To find zwz w, we multiply the complex numbers:

zw=(1+2i)(1+i)=1×1+1×i+2i×1+2i×i=1+i+2i2=1+3i.z w = (1 + 2i)(1 + i) = 1 \times 1 + 1 \times i + 2i \times 1 + 2i \times i = 1 + i + 2i - 2 = -1 + 3i.

Thus, the result is 1+3i-1 + 3i.

Step 2

(ii) $\frac{1}{w}$

99%

104 rated

Answer

To find 1w\frac{1}{w}, we need to multiply by the conjugate:

1w=11+i1i1i=1i1i2=1i2=1212i.\frac{1}{w} = \frac{1}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-i}{1 - i^2} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i.

Thus, the result is 1212i\frac{1}{2} - \frac{1}{2}i.

Step 3

On an Argand diagram, shade the region where the inequalities hold

96%

101 rated

Answer

The inequality 0Rez20 \leq \text{Re} z \leq 2 represents a vertical strip from x=0x=0 to x=2x=2 on the Argand plane. The inequality z1+i2|z - 1 + i| \leq 2 represents a circle centered at (1,1)(1, 1) with a radius of 2.

To shade the region where both inequalities hold, we shade the strip and also the area inside the circle. The overlapping region of these two will be shaded.

Step 4

State why $2 - i$ is also a root of $P(z)$

98%

120 rated

Answer

Since the coefficients of the polynomial P(z)P(z) are real numbers, the roots of the polynomial occur in conjugate pairs. Therefore, if 2+i2 + i is a root, 2i2 - i must also be a root.

Step 5

(ii) Factorise $P(z)$ over the real numbers

97%

117 rated

Answer

Given the roots 2+i2 + i and 2i2 - i, we can express the polynomial P(z)P(z) as: P(z)=(z(2+i))(z(2i))(zr)P(z) = (z - (2+i))(z - (2-i))(z - r)

First, multiplying the conjugate pairs gives: (z(2+i))(z(2i))=(z2i)(z2+i)=(z2)2+1=z24z+5.(z - (2+i))(z - (2-i)) = (z - 2 - i)(z - 2 + i) = (z - 2)^2 + 1 = z^2 - 4z + 5.

Now, we need to add the factor corresponding to the third root rr, which can be expressed as: P(z)=(z24z+5)(zr).P(z) = (z^2 - 4z + 5)(z - r).

Step 6

Prove by induction that, for all integers $n \geq 1$, $\left( \cos \theta - i \sin \theta \right)^n = \cos(n\theta) - i \sin(n\theta)$

97%

121 rated

Answer

We will use mathematical induction.

Base case: For n=1n = 1, it holds that: (cosθisinθ)1=cosθisinθ.\left( \cos \theta - i \sin \theta \right)^1 = \cos \theta - i \sin \theta.

Inductive step: Assume the formula holds for n=kn = k, i.e., (cosθisinθ)k=cos(kθ)isin(kθ).\left( \cos \theta - i \sin \theta \right)^k = \cos(k\theta) - i \sin(k\theta).

Then for n=k+1n = k + 1: (cosθisinθ)k+1=(cosθisinθ)(cos(kθ)isin(kθ)).\left( \cos \theta - i \sin \theta \right)^{k+1} = \left( \cos \theta - i \sin \theta \right) \left( \cos(k\theta) - i \sin(k\theta) \right).

Expanding and rearranging using angle addition formulas, we have: =cosθcos(kθ)+sinθsin(kθ)i(sinθcos(kθ)cosθsin(kθ))= \cos \theta \cos(k\theta) + \sin \theta \sin(k\theta) - i (\sin \theta \cos(k\theta) - \cos \theta \sin(k\theta)) =cos((k+1)θ)isin((k+1)θ). = \cos((k + 1)\theta) - i \sin((k + 1)\theta). Thus, by induction, the formula holds for all integers n1n \geq 1.

Step 7

(i) Find $\frac{1}{z}$

96%

114 rated

Answer

Given z=2(cosθ+isinθ)z = 2 \left( \cos \theta + i \sin \theta \right), 1z=12(cosθ+isinθ)=12cosθisinθcos2θ+sin2θ=12(cosθisinθ).\frac{1}{z} = \frac{1}{2 \left( \cos \theta + i \sin \theta \right)} = \frac{1}{2} \cdot \frac{\cos \theta - i \sin \theta}{\cos^2 \theta + \sin^2 \theta} = \frac{1}{2} \left( \cos \theta - i \sin \theta \right).

Step 8

(ii) Show that the real part of $\frac{1}{1 - z}$ is $\frac{1 - 2 \cos \theta}{5 - 4 \cos \theta}$

99%

104 rated

Answer

To find this, we first calculate: 11z=112(cosθ+isinθ)=112cosθ2isinθ.\frac{1}{1 - z} = \frac{1}{1 - 2(\cos \theta + i \sin \theta)} = \frac{1}{1 - 2\cos \theta - 2i \sin \theta}. Multiplying by the conjugate: 12cosθ+2isinθ(12cosθ)2+(2sinθ)2=12cosθ+2isinθ14cosθ+4cos2θ+4sin2θ=12cosθ+2isinθ(14cosθ+4)=(54cosθ).\frac{1 - 2\cos \theta + 2i \sin \theta}{(1 - 2\cos \theta)^2 + (2\sin \theta)^2} = \frac{1 - 2\cos \theta + 2i \sin \theta}{1 - 4\cos \theta + 4\cos^2 \theta + 4\sin^2 \theta} = \frac{1 - 2\cos \theta + 2i \sin \theta}{(1 - 4\cos \theta + 4) = (5 - 4\cos \theta)}. Thus, the real part is 12cosθ54cosθ\frac{1 - 2\cos \theta}{5 - 4\cos \theta}.

Step 9

(iii) Express the imaginary part of $\frac{1}{1 - z}$ in terms of $\theta$

96%

101 rated

Answer

From the result in (ii), the imaginary part of 11z\frac{1}{1 - z} is: 2sinθ(54cosθ).\frac{2\sin \theta}{(5 - 4\cos \theta)}. Thus, the imaginary part expressed in terms of θ\theta is 2sinθ54cosθ\frac{2\sin \theta}{5 - 4\cos \theta}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;