Photo AI

Let $z = 1 + 2i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Question icon

Question 2

Let-$z-=-1-+-2i$-and-$w-=-1-+-i$-HSC-SSCE Mathematics Extension 2-Question 2-2002-Paper 1.png

Let $z = 1 + 2i$ and $w = 1 + i$. Find, in the form $x + iy$, (i) $z ar{w}$ (ii) $\frac{1}{w}$ --- On an Argand diagram, shade in the region where the inequali... show full transcript

Worked Solution & Example Answer:Let $z = 1 + 2i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2002 - Paper 1

Step 1

(i) $z \bar{w}$

96%

114 rated

Answer

To find zwˉz \bar{w}, we first need to compute the conjugate of ww. The conjugate of w=1+iw = 1 + i is ar{w} = 1 - i. Now we can multiply:

zwˉ=(1+2i)(1i)z \bar{w} = (1 + 2i)(1 - i)

Expanding this:

=1i+2i2i2 = 1 - i + 2i - 2i^2

Using i2=1i^2 = -1, we substitute to get:

=1i+2i+2 = 1 - i + 2i + 2 =3+i = 3 + i

Thus, the answer is 3+i3 + i.

Step 2

(ii) $\frac{1}{w}$

99%

104 rated

Answer

To find 1w\frac{1}{w}, we can multiply the numerator and denominator by the conjugate of ww:

1w=11+i1i1i=1i12+12=1i2\frac{1}{w} = \frac{1}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-i}{1^2 + 1^2} = \frac{1-i}{2}

Thus, the answer is 1212i\frac{1}{2} - \frac{1}{2}i.

Step 3

Shading the Region

96%

101 rated

Answer

To shade the region on the Argand diagram, we first interpret the inequalities:

  1. The inequality 0Rez<20 \leq Re z < 2 means we are looking at the vertical strip between the lines Re(z)=0Re(z) = 0 and Re(z)=2Re(z) = 2.

  2. The inequality z1+i<2|z - 1 + i| < 2 describes a circle centered at (1,1)(1,1) with a radius of 2.

The region where both inequalities hold is the area inside the circle that also lies within the vertical strip.

Step 4

(i) Why $2 - i$ is a root

98%

120 rated

Answer

Since P(z)P(z) has real coefficients, any non-real root must occur in conjugate pairs. Hence, if 2+i2 + i is a root, its conjugate 2i2 - i must also be a root.

Step 5

(ii) Factorising $P(z)$

97%

117 rated

Answer

Given that 2+i2 + i and 2i2 - i are roots, we can factor P(z)P(z) as:

P(z)=(z(2+i))(z(2i))(zr)P(z) = (z - (2+i))(z - (2-i))(z - r)

First, we find the quadratic factor:

=(z2i)(z2+i)=(z2)2+1=z24z+5 = (z - 2 - i)(z - 2 + i) = (z - 2)^2 + 1 = z^2 - 4z + 5

Therefore, we can express P(z)P(z) as:

P(z)=(z24z+5)(zr)P(z) = (z^2 - 4z + 5)(z - r)

We can find rr once the third root is known.

Step 6

Proving by Induction

97%

121 rated

Answer

To prove by induction:

Base Case: For n=1n = 1: (cosθisinθ)1=cos(1θ)isin(1θ)(cos \theta - i sin \theta)^1 = cos(1 \theta) - i sin(1 \theta) This holds true.

Inductive Step: Assume true for n=kn=k: (cosθisinθ)k=cos(kθ)isin(kθ)(cos \theta - i sin \theta)^k = cos(k \theta) - i sin(k \theta) Now, show for n=k+1n=k+1:

(cosθisinθ)k+1=(cosθisinθ)(cos(kθ)isin(kθ))(cos \theta - i sin \theta)^{k+1} = (cos \theta - i sin \theta)(cos(k \theta) - i sin(k \theta))

Using the product-to-sum identities: =cosθcos(kθ)+sinθsin(kθ)i(sinθcos(kθ)cosθsin(kθ))= cos \theta cos(k \theta) + sin \theta sin(k \theta) - i (sin \theta cos(k \theta) - cos \theta sin(k \theta))

This leads to: =cos((k+1)θ)isin((k+1)θ)= cos((k+1) \theta) - i sin((k+1) \theta)

By induction, the statement holds for all integers n1n \geq 1.

Step 7

(i) Find $\frac{1}{z}$

96%

114 rated

Answer

To find 1z\frac{1}{z}: z=2(cosθ+isinθ)z = 2(cos \theta + i sin \theta) We can use the polar form and calculate: 1z=12(cos(θ)+isin(θ))\frac{1}{z} = \frac{1}{2}(cos(-\theta) + i sin(-\theta)) Thus, the answer is 12(cos(θ)+isin(θ))\frac{1}{2} (cos(-\theta) + i sin(-\theta)).

Step 8

(ii) Show the real part of $\frac{1}{1-z}$

99%

104 rated

Answer

Using the formula for the real part, we compute:

11z=112(cosθ+isinθ)\frac{1}{1 - z} = \frac{1}{1 - 2(cos \theta + i sin \theta)} We simplify this to: =12(cosθ+isinθ)(1z)(12cosθ)2+(2sinθ)2= \frac{1 - 2(cos \theta + i sin \theta)(1 - z)}{(1 - 2 cos \theta)^2 + (-2 sin \theta)^2} After resolving fractions, we ascertain:

Re(11z)=12cosθ54cos2θRe(\frac{1}{1-z}) = \frac{1 - 2 cos \theta}{5 - 4 cos^2 \theta}.

Step 9

(iii) Imaginary part of $\frac{1}{1 - z}$

96%

101 rated

Answer

For the imaginary part, we look at: Im(11z)=2sinθ(12cosθ)2+(2sinθ)2Im(\frac{1}{1 - z}) = \frac{-2 sin \theta}{(1 - 2 cos \theta)^2 + (2 sin \theta)^2} This simplifies to yield: =2sinθ54cos2θ= \frac{-2 sin \theta}{5 - 4 cos^2 \theta}. Thus, we express the imaginary part in terms of θ\theta.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;