Photo AI

Find real numbers $a$ and $b$ such that $(1 + 2i)(1 - 3i) = a + ib.$ (b) (i) Write $\frac{1 + i\sqrt{3}}{1 + i}$ in the form $x + iy$, where $x$ and $y$ are real - HSC - SSCE Mathematics Extension 2 - Question 2 - 2008 - Paper 1

Question icon

Question 2

Find-real-numbers-$a$-and-$b$-such-that-$(1-+-2i)(1---3i)-=-a-+-ib.$--(b)-(i)-Write-$\frac{1-+-i\sqrt{3}}{1-+-i}$-in-the-form-$x-+-iy$,-where-$x$-and-$y$-are-real-HSC-SSCE Mathematics Extension 2-Question 2-2008-Paper 1.png

Find real numbers $a$ and $b$ such that $(1 + 2i)(1 - 3i) = a + ib.$ (b) (i) Write $\frac{1 + i\sqrt{3}}{1 + i}$ in the form $x + iy$, where $x$ and $y$ are real. ... show full transcript

Worked Solution & Example Answer:Find real numbers $a$ and $b$ such that $(1 + 2i)(1 - 3i) = a + ib.$ (b) (i) Write $\frac{1 + i\sqrt{3}}{1 + i}$ in the form $x + iy$, where $x$ and $y$ are real - HSC - SSCE Mathematics Extension 2 - Question 2 - 2008 - Paper 1

Step 1

Find real numbers $a$ and $b$ such that $(1 + 2i)(1 - 3i) = a + ib.$

96%

114 rated

Answer

To find aa and bb, we compute the left-hand side:

(1+2i)(13i)=13i+2i6i2=1i+6=7i.(1 + 2i)(1 - 3i) = 1 - 3i + 2i - 6i^2 = 1 - i + 6 = 7 - i.
Thus, a=7a = 7 and b=1.b = -1.

Step 2

(b) (i) Write $\frac{1 + i\sqrt{3}}{1 + i}$ in the form $x + iy$, where $x$ and $y$ are real.

99%

104 rated

Answer

We simplify:

1+i31+i=(1+i3)(1i)(1+i)(1i)=(1i)+i331+1=(13)+(31)i2.\frac{1 + i\sqrt{3}}{1 + i} = \frac{(1 + i\sqrt{3})(1 - i)}{(1 + i)(1 - i)} = \frac{(1 - i) + i\sqrt{3} - \sqrt{3}}{1 + 1} = \frac{(1 - \sqrt{3}) + (\sqrt{3} - 1)i}{2}.
Thus, x=132,y=312.x = \frac{1 - \sqrt{3}}{2}, \quad y = \frac{\sqrt{3} - 1}{2}.

Step 3

(b) (ii) By expressing both $\frac{1 + \sqrt{3}}{i}$ and $1 + i$ in modulus-argument form, write $\frac{1 + \sqrt{3}}{i + 1}$ in modulus-argument form.

96%

101 rated

Answer

First, we compute:

  • For 1+3i\frac{1 + \sqrt{3}}{i}, we have a magnitude of (1+3)2+12=2\sqrt{(1 + \sqrt{3})^2 + 1^2} = 2 and an argument of π6\frac{\pi}{6}.
  • For 1+i1 + i, the magnitude is 2\sqrt{2} and the argument is π4\frac{\pi}{4}.

Putting it all together: 1+3i+1=(1+3)eiπ62eiπ4=2(1+3)2ei(π6π4).\frac{1 + \sqrt{3}}{i + 1} = \frac{(1 + \sqrt{3}) e^{i\frac{\pi}{6}}}{\sqrt{2} e^{i\frac{\pi}{4}}} = \frac{2(1 + \sqrt{3})}{\sqrt{2}} e^{i(\frac{\pi}{6} - \frac{\pi}{4})}.

Step 4

(b) (iii) Hence find $\cos\frac{\pi}{12}$ in surd form.

98%

120 rated

Answer

Using the half-angle identity, we find cosπ12=1+cosπ62=1+322=2+34=2+32.\cos\frac{\pi}{12} = \sqrt{\frac{1 + \cos{\frac{\pi}{6}}}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{2 + \sqrt{3}}{4}} = \frac{\sqrt{2 + \sqrt{3}}}{2}.

Step 5

(b) (iv) By using the result of part (ii), or otherwise, calculate $\left(\frac{1+i\sqrt{3}}{1+i}\right)^{\frac{1}{2}}$.

97%

117 rated

Answer

Using modulus-argument form from part (ii): (1+i31+i)12=(2ei(π6π4))12=2ei12(π6π4)=24eiπ12.\left(\frac{1+i\sqrt{3}}{1+i}\right)^{\frac{1}{2}} = \left(\sqrt{2} e^{i(\frac{\pi}{6} - \frac{\pi}{4})}\right)^{\frac{1}{2}} = \sqrt{\sqrt{2}} e^{i\frac{1}{2}(\frac{\pi}{6} - \frac{\pi}{4})} = \sqrt[4]{2} e^{i\frac{\pi}{12}}.

Step 6

(c) The point $P$ on the Argand diagram represents the complex number $z = x + iy$ which satisfies $z^2 + z = 0$. Find the equation of the locus of $P$ in terms of $x$ and $y$. What type of curve is the locus?

97%

121 rated

Answer

To solve the equation:

z2+z=0z(z+1)=0.z^2 + z = 0 \\ \Rightarrow z(z + 1) = 0. This implies z=0z = 0 or z=1z = -1, representing two points on the Argand diagram. Since this is an equation with solutions that are discrete points, the locus consists of these two points. The type of curve represented here is a pair of points.

Step 7

(d) (i) Find the complex number representing $M$ in terms of $z$.

96%

114 rated

Answer

The midpoint MM of points QQ and RR can be expressed as: M=ωz+ωz2=z(ω+ω)2=zcos2π3+cos2π32=z12.M = \frac{\omega z + \overline{\omega} z}{2} = \frac{z(\omega + \overline{\omega})}{2} = z \cdot \frac{\cos\frac{2\pi}{3} + \cos\frac{2\pi}{3}}{2} = z \cdot \frac{-1}{2}.

Step 8

(d) (ii) The point $S$ is chosen so that $PQSR$ is a parallelogram. Find the complex number represented by $S$.

99%

104 rated

Answer

Since PQSRPQSR is a parallelogram, we can state that: PQ+RS=0.\overline{PQ} + \overline{RS} = 0. From this, we have: S=z+(ωω)z=z(1+ωω).S = z + (\overline{\omega} - \omega) z = z(1 + \overline{\omega} - \omega).
Thus, the complex number represented by SS is: S=z(1+ωω).S = z (1 + \overline{\omega} - \omega).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;