Photo AI

a) Express $\frac{3 - i}{2 + i}$ in the form $x + iy$, where $x$ and $y$ are real numbers - HSC - SSCE Mathematics Extension 2 - Question 11 - 2022 - Paper 1

Question icon

Question 11

a)-Express-$\frac{3---i}{2-+-i}$-in-the-form-$x-+-iy$,-where-$x$-and-$y$-are-real-numbers-HSC-SSCE Mathematics Extension 2-Question 11-2022-Paper 1.png

a) Express $\frac{3 - i}{2 + i}$ in the form $x + iy$, where $x$ and $y$ are real numbers. b) Evaluate $\sin 2x \cos 2xdx$. c) i) Write the complex number $-\sqrt{... show full transcript

Worked Solution & Example Answer:a) Express $\frac{3 - i}{2 + i}$ in the form $x + iy$, where $x$ and $y$ are real numbers - HSC - SSCE Mathematics Extension 2 - Question 11 - 2022 - Paper 1

Step 1

Express $\frac{3 - i}{2 + i}$ in the form $x + iy$

96%

114 rated

Answer

To express the given complex number in the form x+iyx + iy, multiply both the numerator and denominator by the conjugate of the denominator:

3i2+i2i2i=(3i)(2i)(2+i)(2i)\frac{3 - i}{2 + i} \cdot \frac{2 - i}{2 - i} = \frac{(3 - i)(2 - i)}{(2 + i)(2 - i)}

Calculating the denominator:

(2+i)(2i)=4+1=5(2 + i)(2 - i) = 4 + 1 = 5

Now, for the numerator:

(3i)(2i)=63i2i+i2=65i1=55i(3 - i)(2 - i) = 6 - 3i - 2i + i^2 = 6 - 5i - 1 = 5 - 5i

Thus, we get:

55i5=1i\frac{5 - 5i}{5} = 1 - i

Therefore, the answer is 1i1 - i, where x=1x = 1 and y=1y = -1.

Step 2

Evaluate $\sin 2x \cos 2x dx$

99%

104 rated

Answer

Using the identity sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x, we rewrite:

sin2xcos2x=12sin4x\sin 2x \cos 2x = \frac{1}{2} \sin 4x

Thus, we have:

sin2xcos2xdx=12sin4xdx\int \sin 2x \cos 2x \,dx = \frac{1}{2} \int \sin 4x \,dx.

Calculating the integral:

12(14cos4x)+C=18cos4x+C\frac{1}{2} \cdot \left( -\frac{1}{4} \cos 4x \right) + C = -\frac{1}{8} \cos 4x + C.

Step 3

Write the complex number $-\sqrt{3} + i$ in exponential form

96%

101 rated

Answer

To write 3+i-\sqrt{3} + i in exponential form, we first find its modulus and argument:

The modulus is:

r=(3)2+12=3+1=2r = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = 2

The argument is:

θ=tan1(13)=5π6\theta = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right) = \frac{5\pi}{6}

Thus, 3+i-\sqrt{3} + i can be expressed in exponential form as:

2ei5π62 e^{i\frac{5\pi}{6}}.

Step 4

Hence, find the exact value of $(-\sqrt{3} + i)^{10}$

98%

120 rated

Answer

Using De Moivre's theorem:

(3+i)10=(2ei5π6)10=210ei50π6=1024ei25π3(-\sqrt{3} + i)^{10} = (2 e^{i\frac{5\pi}{6}})^{10} = 2^{10} e^{i\frac{50\pi}{6}} = 1024 e^{i\frac{25\pi}{3}}

Since 25π3\frac{25\pi}{3} exceeds 2π2\pi, we reduce it:

25π3=8π+1π3\frac{25\pi}{3} = 8\pi + \frac{1\pi}{3}

Thus:

ei25π3=eiπ33+i=1024(12+i32)e^{i\frac{25\pi}{3}} = e^{i\frac{\pi}{3}}\Rightarrow -\sqrt{3} + i = 1024 \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)

This gives us:

=512+512i512+512i= 512 + 512i\Rightarrow 512 + 512i.

Step 5

Find the size of $\angle ABC$

97%

117 rated

Answer

To find ABC\angle ABC, first calculate vectors AB\vec{AB} and AC\vec{AC}. The coordinates are:

AB=BA=(01,2+1,12)=(1,3,3)\vec{AB} = B - A = (0 - 1, 2 + 1, -1 - 2) = (-1, 3, -3) AC=CA=(21,1+1,12)=(1,2,1)\vec{AC} = C - A = (2 - 1, 1 + 1, 1 - 2) = (1, 2, -1)

Now, use the dot product to find the angle:

ABAC=(1)(1)+(3)(2)+(3)(1)=1+6+3=8\vec{AB} \cdot \vec{AC} = (-1)(1) + (3)(2) + (-3)(-1) = -1 + 6 + 3 = 8

The magnitudes are:

AB=(1)2+32+(3)2=1+9+9=19|\vec{AB}| = \sqrt{(-1)^2 + 3^2 + (-3)^2} = \sqrt{1 + 9 + 9} = \sqrt{19} AC=(1)2+22+(1)2=1+4+1=6|\vec{AC}| = \sqrt{(1)^2 + 2^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}

Using the cosine rule:

cosABC=ABACABAC=8196\cos \angle ABC = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| |\vec{AC}|} = \frac{8}{\sqrt{19} \cdot \sqrt{6}}

Calculating gives:

ABC=cos1(8114)33\angle ABC = \cos^{-1}\left(\frac{8}{\sqrt{114}}\right) \approx 33^{\circ}.

Step 6

Find the equation of the line $l_2$

97%

121 rated

Answer

Since line l2l_2 is parallel to l1l_1, it has the same direction vector (32)\begin{pmatrix} 3 \\ 2 \end{pmatrix}. The point A(6,5)A(-6, 5) gives:

The parametric form is:

(xy)=(65)+μ(32)\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -6 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 2 \end{pmatrix}

This leads to:

x=6+3μ,y=5+2μx = -6 + 3\mu, \, y = 5 + 2\mu

To write in the form y=mx+cy = mx + c, solve for μ\mu:

From x=6+3μx = -6 + 3\mu:

μ=x+63\mu = \frac{x + 6}{3}

Substituting into yy gives:

y=5+2(x+63)=5+2x+123=2x+12+153=2x+273y = 5 + 2\left(\frac{x + 6}{3}\right) = 5 + \frac{2x + 12}{3} = \frac{2x + 12 + 15}{3} = \frac{2x + 27}{3}

Thus, the equation is:

y=23x+9y = \frac{2}{3}x + 9.

Step 7

Find $\int \frac{dx}{1 + \cos x - \sin x}$

96%

114 rated

Answer

Using the substitution t=tanx2t = \tan \frac{x}{2}, we have:

dx=21+t2dtdx = \frac{2}{1 + t^2} dt

Expressing cosx\cos x and sinx\sin x in terms of tt gives:

cosx=1t21+t2,sinx=2t1+t2\cos x = \frac{1 - t^2}{1 + t^2}, \quad \sin x = \frac{2t}{1 + t^2}

Thus, the integral becomes:

dx1+1t21+t22t1+t2=2dt1+t2+1t22t=2dt22t=ln1t+C\int \frac{dx}{1 + \frac{1 - t^2}{1 + t^2} - \frac{2t}{1 + t^2}} = \int \frac{2dt}{1 + t^2 + 1 - t^2 - 2t} = \int \frac{2dt}{2 - 2t} = -\ln|1 - t| + C.

Substituting back gives:

=ln1tanx2+C= -\ln\left|1 - \tan \frac{x}{2}\right| + C.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;