Photo AI

Mathematics Standard 2 1 - HSC - SSCE Mathematics Standard - Question 1 - 2023 - Paper 1

Question icon

Question 1

Mathematics-Standard-2--1-HSC-SSCE Mathematics Standard-Question 1-2023-Paper 1.png

Mathematics Standard 2 1. Use the following figure to answer the questions below. ![Figure](URL-to-the-figure) a) Calculate the area of the triangle formed ... show full transcript

Worked Solution & Example Answer:Mathematics Standard 2 1 - HSC - SSCE Mathematics Standard - Question 1 - 2023 - Paper 1

Step 1

a) Calculate the area of the triangle formed by the vertices A(2,3), B(5,11), and C(12,5).

96%

114 rated

Answer

To calculate the area of a triangle given its vertices, we can use the formula:

Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)Area = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|

Substituting the coordinates of points A(2,3), B(5,11), and C(12,5):

  • x1=2x_1 = 2, y1=3y_1 = 3
  • x2=5x_2 = 5, y2=11y_2 = 11
  • x3=12x_3 = 12, y3=5y_3 = 5

Calculating:

Area=122(115)+5(53)+12(311) =122(6)+5(2)+12(8) =1212+1096 =1274 =37Area = \frac{1}{2} \left| 2(11 - 5) + 5(5 - 3) + 12(3 - 11) \right| \ = \frac{1}{2} \left| 2(6) + 5(2) + 12(-8) \right| \ = \frac{1}{2} \left| 12 + 10 - 96 \right| \ = \frac{1}{2} \left| -74 \right| \ = 37

Thus, the area of the triangle is 37 square units.

Step 2

b) Determine the length of side AB.

99%

104 rated

Answer

To determine the length of side AB, we use the distance formula:

Distance=(x2x1)2+(y2y1)2Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Substituting the coordinates of points A(2,3) and B(5,11):

DistanceAB=(52)2+(113)2 =32+82 =9+64 =73 8.54Distance_{AB} = \sqrt{(5 - 2)^2 + (11 - 3)^2} \ = \sqrt{3^2 + 8^2} \ = \sqrt{9 + 64} \ = \sqrt{73} \ \approx 8.54

Thus, the length of side AB is approximately 8.54 units.

Step 3

c) If the triangle is reflected across the y-axis, what are the coordinates of the new vertices?

96%

101 rated

Answer

To find the coordinates of the reflected points across the y-axis, we change the sign of the x-coordinates.

The vertices are:

  • A(2,3) → A'(-2,3)
  • B(5,11) → B'(-5,11)
  • C(12,5) → C'(-12,5)

Thus, the new coordinates after reflection are A'(-2,3), B'(-5,11), and C'(-12,5).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;