To find the electron affinity of chlorine, we can use Hess's law and the following thermodynamic equation:
ΔHf=ΔHatom(Sr)+ΔHion(Sr)+ΔHatom(Cl)+ΔHaff+ΔHlattice
Substituting the values from Table 1:
- Enthalpy of formation of strontium chloride, (\Delta H_f = -828 \text{ kJ mol}^{-1})
- Enthalpy of atomization of strontium, (\Delta H_{atom}(Sr) = +164 \text{ kJ mol}^{-1})
- First ionization energy of strontium, (\Delta H_{ion}(Sr) = +548 \text{ kJ mol}^{-1})
- Enthalpy of atomization of chlorine, (\Delta H_{atom}(Cl) = +121 \text{ kJ mol}^{-1})
- Enthalpy of lattice formation of strontium chloride, (\Delta H_{lattice} = -2112 \text{ kJ mol}^{-1})
The equation can be rearranged to solve for (\Delta H_{aff}):
−828=164+548+121+ΔHaff−2112
Calculating:
−828=164+548+121−2112+ΔHaff
−828=−1279+ΔHaff
Thus, we get:
ΔHaff=−828+1279=451 kJ mol−1
Therefore, the electron affinity of chlorine is approximately (-451) kJ mol⁻¹.