Photo AI

2,4,6-Trichlorophenol is a weak monoprotic acid, with $K_a = 2.51 \times 10^{-6} \ mol \ dm^{-3}$ at 298 K - AQA - A-Level Chemistry - Question 9 - 2017 - Paper 3

Question icon

Question 9

2,4,6-Trichlorophenol-is-a-weak-monoprotic-acid,-with-$K_a-=-2.51-\times-10^{-6}-\-mol-\-dm^{-3}$-at-298-K-AQA-A-Level Chemistry-Question 9-2017-Paper 3.png

2,4,6-Trichlorophenol is a weak monoprotic acid, with $K_a = 2.51 \times 10^{-6} \ mol \ dm^{-3}$ at 298 K. What is the concentration, in mol dm$^{-3}$, of hydrogen... show full transcript

Worked Solution & Example Answer:2,4,6-Trichlorophenol is a weak monoprotic acid, with $K_a = 2.51 \times 10^{-6} \ mol \ dm^{-3}$ at 298 K - AQA - A-Level Chemistry - Question 9 - 2017 - Paper 3

Step 1

Calculation of H$^+$ Concentration

96%

114 rated

Answer

To find the hydrogen ion concentration from the weak acid, we will use the equilibrium expression for the dissociation of the weak acid:

Ka=[H+][A][HA]K_a = \frac{[H^+][A^-]}{[HA]}

Assuming that xx is the concentration of H+H^+ and AA^- formed at equilibrium:

  • The initial concentration of the acid, HAHA, is [HA]0=2.00×103 mol dm3[HA]_0 = 2.00 \times 10^{-3} \ mol \ dm^{-3}.
  • At equilibrium, [HA]=[HA]0x[HA] = [HA]_0 - x.
  • Therefore, [H+]=x[H^+] = x and [A]=x[A^-] = x.

This leads to:

Ka=x2[HA]0xK_a = \frac{x^2}{[HA]_0 - x}

Assuming xx is very small compared to [HA]0[HA]_0, we simplify this to:

Ka=x2[HA]0K_a = \frac{x^2}{[HA]_0}

Now we substitute the known values:

2.51×106=x22.00×1032.51 \times 10^{-6} = \frac{x^2}{2.00 \times 10^{-3}}

Rearranging gives:

x2=2.51×106×2.00×103x^2 = 2.51 \times 10^{-6} \times 2.00 \times 10^{-3}

Calculating gives:

x2=5.02×109x^2 = 5.02 \times 10^{-9}

Taking the square root:

x=5.02×1097.09×105 mol dm3x = \sqrt{5.02 \times 10^{-9}} \approx 7.09 \times 10^{-5} \ mol \ dm^{-3}

Thus, the concentration of hydrogen ions in the solution is 7.09×105 mol dm37.09 \times 10^{-5} \ mol \ dm^{-3}, which corresponds to option B.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;