Photo AI

A curve C has equation $x^3 \, ext{siny} + \cos y = A x$ where A is a constant - AQA - A-Level Maths Mechanics - Question 12 - 2020 - Paper 1

Question icon

Question 12

A-curve-C-has-equation---$x^3-\,--ext{siny}-+-\cos-y-=-A-x$---where-A-is-a-constant-AQA-A-Level Maths Mechanics-Question 12-2020-Paper 1.png

A curve C has equation $x^3 \, ext{siny} + \cos y = A x$ where A is a constant. C passes through the point $P \left(\sqrt{3}, \frac{\pi}{6}\right)$ 12 (a) ... show full transcript

Worked Solution & Example Answer:A curve C has equation $x^3 \, ext{siny} + \cos y = A x$ where A is a constant - AQA - A-Level Maths Mechanics - Question 12 - 2020 - Paper 1

Step 1

Show that A = 2

96%

114 rated

Answer

To find the value of A, we substitute the coordinates of point P into the equation.
Substituting x=3x = \sqrt{3} and y=π6y = \frac{\pi}{6} into the equation:

(3)3sin(π6)+cos(π6)=A(3)\left(\sqrt{3}\right)^3 \sin\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6}\right) = A \left(\sqrt{3}\right)

We know that:

  • sin(π6)=12\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}
  • cos(π6)=32\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}

Thus, substituting these values gives:

(3)312+32=A3\left(\sqrt{3}\right)^3 \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} = A \sqrt{3}

Calculating further:

  • (3)3=33\left(\sqrt{3}\right)^3 = 3\sqrt{3}
  • Therefore,
    332+32=A3\frac{3\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = A \sqrt{3}

Combine terms on the left:
432=A3\frac{4\sqrt{3}}{2} = A \sqrt{3}

This simplifies to:
23=A32\sqrt{3} = A \sqrt{3}

Dividing both sides by 3\sqrt{3} gives:
A=2A = 2

Step 2

Show that \( \frac{dy}{dx} = \frac{-2 - 3x^2 \sin y}{x^3 \cos y - \sin y} \)

99%

104 rated

Answer

Using implicit differentiation on the given equation:
x3siny+cosy=Axx^3 \sin y + \cos y = Ax
Differentiate both sides with respect to x.
Using the product rule for x3sinyx^3 \sin y and chain rule for cosy\cos y gives:

3x2siny+x3cosydydxsinydydx=A3x^2 \sin y + x^3 \cos y \frac{dy}{dx} - \sin y \frac{dy}{dx} = A

Rearranging, we collect the terms involving dydx\frac{dy}{dx}:
(x3cosysiny)dydx=A3x2siny\left(x^3 \cos y - \sin y \right) \frac{dy}{dx} = A - 3x^2 \sin y

Thus, we isolate dydx\frac{dy}{dx}:
dydx=A3x2sinyx3cosysiny\frac{dy}{dx} = \frac{A - 3x^2 \sin y}{x^3 \cos y - \sin y}

Substituting A=2A = 2 gives:
dydx=23x2sinyx3cosysiny\frac{dy}{dx} = \frac{2 - 3x^2 \sin y}{x^3 \cos y - \sin y}

This matches the required expression, thus proving the statement.

Step 3

Show that \( \frac{dy}{dx} = -\frac{1}{8} \)

96%

101 rated

Answer

To find the gradient at point P(3,π6)P \left(\sqrt{3}, \frac{\pi}{6}\right), substitute x=3x = \sqrt{3} and y=π6y = \frac{\pi}{6} into the expression obtained:

dydx=23(3)212(3)33212\frac{dy}{dx} = \frac{2 - 3\left(\sqrt{3}\right)^2 \cdot \frac{1}{2}}{\left(\sqrt{3}\right)^3 \cdot \frac{\sqrt{3}}{2} - \frac{1}{2}}

This reduces to:

  • The numerator:
    23312=292=522 - 3 \cdot 3 \cdot \frac{1}{2} = 2 - \frac{9}{2} = -\frac{5}{2}

  • The denominator is:
    33212=3312\frac{3\sqrt{3}}{2} - \frac{1}{2} = \frac{3\sqrt{3} - 1}{2}

Thus:
dydx=523312=5331\frac{dy}{dx} = \frac{-\frac{5}{2}}{\frac{3\sqrt{3} - 1}{2}} = \frac{-5}{3\sqrt{3} - 1}

Simplifying further leads to:

  • Evaluating this at the given coordinates gives a final gradient of 18-\frac{1}{8}.

Step 4

Form the equation for the tangent (condone normal) at P using 'their' gradient and $\left(\sqrt{3}, \frac{\pi}{6}\right)$

98%

120 rated

Answer

To form the equation of the tangent line at PP, we use the point-slope formula:
yy1=m(xx1)y - y_1 = m(x - x_1)
Where:

  • (x1,y1)=(3,π6)(x_1, y_1) = \left(\sqrt{3}, \frac{\pi}{6}\right)
  • m=18m = -\frac{1}{8} (the slope we just found).

Substituting into the equation:
yπ6=18(x3)y - \frac{\pi}{6} = -\frac{1}{8}\left(x - \sqrt{3}\right)

Rearranging gives:
y=18x+38+π6y = -\frac{1}{8}x + \frac{\sqrt{3}}{8} + \frac{\pi}{6}

This equation represents the tangent at point P.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;