Photo AI

P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10) - AQA - A-Level Maths Mechanics - Question 8 - 2019 - Paper 1

Question icon

Question 8

P(n)-=-\sum_{k=0}^{n}-k^3---\sum_{k=0}^{n-1}-k^3-\text{-where-}-n-\text{-is-a-positive-integer.}--8-(a)-Find-P(3)-and-P(10)-AQA-A-Level Maths Mechanics-Question 8-2019-Paper 1.png

P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10). 8 (b) Solve the equation P(n) = 1.25 \t... show full transcript

Worked Solution & Example Answer:P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10) - AQA - A-Level Maths Mechanics - Question 8 - 2019 - Paper 1

Step 1

Find P(3)

96%

114 rated

Answer

To find P(3), we need to compute the sums:

  1. Calculate ( \sum_{k=0}^{3} k^3 ):

    • ( 0^3 + 1^3 + 2^3 + 3^3 = 0 + 1 + 8 + 27 = 36 )
  2. Calculate ( \sum_{k=0}^{2} k^3 ):

    • ( 0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 )
  3. Then, we find P(3): [ P(3) = 36 - 9 = 27 ]

Step 2

Find P(10)

99%

104 rated

Answer

To find P(10), we perform the same computation:

  1. Calculate ( \sum_{k=0}^{10} k^3 ):

    • Using the formula ( \left( \frac{n(n+1)}{2} \right)^2 ), we find: [ \left( \frac{10(10+1)}{2} \right)^2 = \left( \frac{10 \times 11}{2} \right)^2 = (55)^2 = 3025 ]
  2. Calculate ( \sum_{k=0}^{9} k^3 ):

    • Similarly, [ \left( \frac{9(9+1)}{2} \right)^2 = \left( \frac{9 \times 10}{2} \right)^2 = (45)^2 = 2025 ]
  3. Now, for P(10): [ P(10) = 3025 - 2025 = 1000 ]

Step 3

Solve the equation P(n) = 1.25 \times 10^8

96%

101 rated

Answer

To solve the equation, we know:

[ P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 = n^3 ]

So we need to solve: [ n^3 = 1.25 \times 10^8 ]

Taking the cube root of both sides: [ n = \sqrt[3]{1.25 \times 10^8} ]

Calculating gives: [ n = 500 ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;