Starting from:
un=2n−53n
We apply the logarithmic identity:
logb(nm)=logbm−logbn
Thus, we have:
log3un=log3(3n)−log3(2n−5)
Calculating these logarithms:
=n−(n−5)log32
This simplifies to:
=n−nlog32+5log32
Now we combine the terms:
=n(1−2log32)+5log32
Thus, we confirm:
log3un=n(1−2log22)+5log32.