Photo AI

Determine a sequence of transformations which maps the graph of $y = ext{cos} heta$ onto the graph of $y = 3 ext{cos} heta + 3 ext{sin} heta$ - AQA - A-Level Maths Mechanics - Question 5 - 2017 - Paper 2

Question icon

Question 5

Determine-a-sequence-of-transformations-which-maps-the-graph-of--$y-=--ext{cos}--heta$-onto-the-graph-of--$y-=-3-ext{cos}--heta-+-3-ext{sin}--heta$-AQA-A-Level Maths Mechanics-Question 5-2017-Paper 2.png

Determine a sequence of transformations which maps the graph of $y = ext{cos} heta$ onto the graph of $y = 3 ext{cos} heta + 3 ext{sin} heta$. Fully justify y... show full transcript

Worked Solution & Example Answer:Determine a sequence of transformations which maps the graph of $y = ext{cos} heta$ onto the graph of $y = 3 ext{cos} heta + 3 ext{sin} heta$ - AQA - A-Level Maths Mechanics - Question 5 - 2017 - Paper 2

Step 1

Identify the transformation type

96%

114 rated

Answer

To map the function from y=extcoshetay = ext{cos} heta to y=3extcosheta+3extsinhetay = 3 ext{cos} heta + 3 ext{sin} heta, we need to interpret the desired transformation in terms of stretching and translating the function.

Step 2

Determine the amplitude and transformations

99%

104 rated

Answer

The transformation involves expressing 3extcosheta+3extsinheta3 ext{cos} heta + 3 ext{sin} heta in the form Rextcos(hetaheta0)R ext{cos}( heta - heta_0), where:

  1. Calculate the magnitude: R=extsqrt(32+32)=extsqrt(18)=3extsqrt(2)R = ext{sqrt}(3^2 + 3^2) = ext{sqrt}(18) = 3 ext{sqrt}(2)
  2. Find the angle: heta_0 = an^{-1} rac{3}{3} = rac{ ext{π}}{4}

Step 3

State the transformations

96%

101 rated

Answer

  1. Stretch in the y-direction by a factor of 3extsqrt(2)3 ext{sqrt}(2): This scales the amplitude of the cosine function.

  2. Translate the graph: The function can be written as: y = 3 ext{cos}( heta - rac{ ext{π}}{4}) Transformation includes a right translation of - rac{ ext{π}}{4}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;