Photo AI

A curve has equation $y = 2x \cos 3x + (3x^2 - 4) \sin 3x$ - AQA - A-Level Maths Mechanics - Question 8 - 2017 - Paper 2

Question icon

Question 8

A-curve-has-equation---$y-=-2x-\cos-3x-+-(3x^2---4)-\sin-3x$-AQA-A-Level Maths Mechanics-Question 8-2017-Paper 2.png

A curve has equation $y = 2x \cos 3x + (3x^2 - 4) \sin 3x$. 8 (a) Find $\frac{dy}{dx}$, giving your answer in the form $(mx^2 + n) \cos 3x$, where $m$ and $n$ a... show full transcript

Worked Solution & Example Answer:A curve has equation $y = 2x \cos 3x + (3x^2 - 4) \sin 3x$ - AQA - A-Level Maths Mechanics - Question 8 - 2017 - Paper 2

Step 1

Find $\frac{dy}{dx}$

96%

114 rated

Answer

To find the derivative of the function, we will apply the product rule. The equation is given as
y=2xcos3x+(3x24)sin3x.y = 2x \cos 3x + (3x^2 - 4) \sin 3x.

  1. Differentiate each term:

    • For the first term, applying the product rule:
      ddx(2xcos3x)=2cos3x+2x(3sin3x)=2cos3x6xsin3x.\frac{d}{dx}(2x \cos 3x) = 2 \cos 3x + 2x \cdot (-3 \sin 3x) = 2 \cos 3x - 6x \sin 3x.
    • For the second term:
      ddx((3x24)sin3x)=(6x)sin3x+(3x24)(3cos3x)=6xsin3x+3(3x24)cos3x.\frac{d}{dx}((3x^2 - 4) \sin 3x) = (6x) \sin 3x + (3x^2 - 4) \cdot (3 \cos 3x) = 6x \sin 3x + 3(3x^2 - 4) \cos 3x.
  2. Combine the results:
    dydx=(2cos3x6xsin3x)+(6xsin3x+9x212)cos3x.\frac{dy}{dx} = \left(2 \cos 3x - 6x \sin 3x\right) + \left(6x \sin 3x + 9x^2 - 12\right) \cos 3x.

  3. Rearrange and factor:
    Collecting like terms, we get
    dydx=(9x210)cos3x.\frac{dy}{dx} = (9x^2 - 10) \cos 3x.

Thus, in the required form (mx2+n)cos3x(mx^2 + n) \cos 3x, we have m=9m = 9 and n=10n = -10.

Step 2

Show that the x-coordinates of the points of inflection satisfy the equation

99%

104 rated

Answer

To find the points of inflection, we need to find the second derivative of ( y ). We start from our first derivative:
dydx=(9x210)cos3x.\frac{dy}{dx} = (9x^2 - 10) \cos 3x.

  1. Find the second derivative:
    Using the product rule again, we find
    d2ydx2=(18x)cos3x+(9x210)(3sin3x)=18xcos3x3(9x210)sin3x.\frac{d^2y}{dx^2} = (18x) \cos 3x + (9x^2 - 10)(-3 \sin 3x) = 18x \cos 3x - 3(9x^2 - 10) \sin 3x.

  2. Set the second derivative to zero:
    We need to solve
    18xcos3x3(9x210)sin3x=0.18x \cos 3x - 3(9x^2 - 10) \sin 3x = 0.
    Rearranging gives us
    cot3x=9x2106x.\cot 3x = \frac{9x^2 - 10}{6x}.
    This confirms the relationship required for the x-coordinates of the points of inflection.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;