Photo AI

f(x) = sin x Using differentiation from first principles find the exact value of \( f \left( \frac{\pi}{6} \right) \) Fully justify your answer. - AQA - A-Level Maths Mechanics - Question 17 - 2017 - Paper 1

Question icon

Question 17

f(x)-=-sin-x--Using-differentiation-from-first-principles-find-the-exact-value-of-\(-f-\left(-\frac{\pi}{6}-\right)-\)--Fully-justify-your-answer.-AQA-A-Level Maths Mechanics-Question 17-2017-Paper 1.png

f(x) = sin x Using differentiation from first principles find the exact value of \( f \left( \frac{\pi}{6} \right) \) Fully justify your answer.

Worked Solution & Example Answer:f(x) = sin x Using differentiation from first principles find the exact value of \( f \left( \frac{\pi}{6} \right) \) Fully justify your answer. - AQA - A-Level Maths Mechanics - Question 17 - 2017 - Paper 1

Step 1

Translate the expression

96%

114 rated

Answer

We start by expressing the limit in terms of the first principles of differentiation:

f' \left( \frac{\pi}{6} \right) = \lim_{h \to 0} \frac{f \left( \frac{\pi}{6} + h \right) - f \left( \frac{\pi}{6} \right)}{h}$$ Substituting for \(f(x)\), we have: $$= \lim_{h \to 0} \frac{\sin \left( \frac{\pi}{6} + h \right) - \sin \left( \frac{\pi}{6} \right)}{h}$$

Step 2

Use the sum angle identity

99%

104 rated

Answer

Next, we apply the sum of angles identity for sine:

sin(a+b)=sinacosb+cosasinb\sin(a + b) = \sin a \cos b + \cos a \sin b

Thus, we can write:

sin(π6+h)=sin(π6)cos(h)+cos(π6)sin(h)\sin \left( \frac{\pi}{6} + h \right) = \sin \left( \frac{\pi}{6} \right) \cos(h) + \cos \left( \frac{\pi}{6} \right) \sin(h)

This gives us:

=limh0(sin(π6)cosh+cos(π6)sinh)sin(π6)h= \lim_{h \to 0} \frac{\left( \sin \left( \frac{\pi}{6} \right) \cos h + \cos \left( \frac{\pi}{6} \right) \sin h \right) - \sin \left( \frac{\pi}{6} \right)}{h}

Step 3

Simplify the expression

96%

101 rated

Answer

Rearranging the expression, we can combine the terms:

=limh0sin(π6)(cosh1)+cos(π6)sinhh= \lim_{h \to 0} \frac{\sin \left( \frac{\pi}{6} \right) (\cos h - 1) + \cos \left( \frac{\pi}{6} \right) \sin h}{h}

Breaking it down into two separate limits:

=limh0(sin(π6)cosh1h+cos(π6)sinhh)= \lim_{h \to 0} \left( \sin \left( \frac{\pi}{6} \right) \frac{\cos h - 1}{h} + \cos \left( \frac{\pi}{6} \right) \frac{\sin h}{h} \right)

Step 4

Deduce limits as h approaches 0

98%

120 rated

Answer

Using known limits:

  1. (\lim_{h \to 0} \frac{\sin h}{h} = 1)
  2. (\lim_{h \to 0} \frac{\cos h - 1}{h} = 0)

We can now substitute these limits into our previous expression:

=sin(π6)0+cos(π6)1= \sin \left( \frac{\pi}{6} \right) \cdot 0 + \cos \left( \frac{\pi}{6} \right) \cdot 1

Step 5

Calculate the final result

97%

117 rated

Answer

Given that (\sin \left( \frac{\pi}{6} \right) = \frac{1}{2}) and (\cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}):

Thus,

f(π6)=0+32=32f' \left( \frac{\pi}{6} \right) = 0 + \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}

Therefore, the final exact value is (f' \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;