A quadrilateral has vertices A, B, C and D with position vectors given by
$$
\vec{OA} = \begin{bmatrix} 3 \\ 5 \\ \end{bmatrix}, \quad \vec{OB} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}, \quad \vec{OC} = \begin{bmatrix} 0 \\ 7 \\ 6 \end{bmatrix} \text{ and } \quad \vec{OD} = \begin{bmatrix} -4 \\ 10 \\ 0 \end{bmatrix}
$$
14 (a) Write down the vector \( \vec{AB} \) - AQA - A-Level Maths Pure - Question 14 - 2018 - Paper 2
Question 14
A quadrilateral has vertices A, B, C and D with position vectors given by
$$
\vec{OA} = \begin{bmatrix} 3 \\ 5 \\ \end{bmatrix}, \quad \vec{OB} = \begin{bmatrix} -1... show full transcript
Worked Solution & Example Answer:A quadrilateral has vertices A, B, C and D with position vectors given by
$$
\vec{OA} = \begin{bmatrix} 3 \\ 5 \\ \end{bmatrix}, \quad \vec{OB} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}, \quad \vec{OC} = \begin{bmatrix} 0 \\ 7 \\ 6 \end{bmatrix} \text{ and } \quad \vec{OD} = \begin{bmatrix} -4 \\ 10 \\ 0 \end{bmatrix}
$$
14 (a) Write down the vector \( \vec{AB} \) - AQA - A-Level Maths Pure - Question 14 - 2018 - Paper 2
Step 1
Write down the vector \( \vec{AB} \)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the vector ( \vec{AB} ), we can use the position vectors of points A and B:
AB=B−A=−127−[35]=−1−32−57−0=−4−36
Step 2
Show that ABCD is a parallelogram, but not a rhombus.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To show that ABCD is a parallelogram, we need to demonstrate that both pairs of opposite sides are equal:
Vectors BC and AD: Calculate ( \vec{BC} ) and ( \vec{AD} ):