Photo AI

Given that $x > 0$ and $x \neq 25$, fully simplify $$\frac{10 + 5x - 2x^{\frac{3}{2}} - x^2}{5 - \sqrt{x}}$$ Fully justify your answer. - AQA - A-Level Maths Pure - Question 6 - 2021 - Paper 3

Question icon

Question 6

Given-that-$x->-0$-and-$x-\neq-25$,-fully-simplify--$$\frac{10-+-5x---2x^{\frac{3}{2}}---x^2}{5---\sqrt{x}}$$--Fully-justify-your-answer.-AQA-A-Level Maths Pure-Question 6-2021-Paper 3.png

Given that $x > 0$ and $x \neq 25$, fully simplify $$\frac{10 + 5x - 2x^{\frac{3}{2}} - x^2}{5 - \sqrt{x}}$$ Fully justify your answer.

Worked Solution & Example Answer:Given that $x > 0$ and $x \neq 25$, fully simplify $$\frac{10 + 5x - 2x^{\frac{3}{2}} - x^2}{5 - \sqrt{x}}$$ Fully justify your answer. - AQA - A-Level Maths Pure - Question 6 - 2021 - Paper 3

Step 1

Write the expression for simplification

96%

114 rated

Answer

We begin with the expression:

10+5x2x32x25x\frac{10 + 5x - 2x^{\frac{3}{2}} - x^2}{5 - \sqrt{x}}

Step 2

Factor the numerator

99%

104 rated

Answer

To simplify the numerator, we can rewrite it as:

10+5x(2x32+x2)10 + 5x - (2x^{\frac{3}{2}} + x^2)

Recognizing that x2=x2x^2 = \sqrt{x}^2, we factor:

10+5x(x2(2x+1))10 + 5\sqrt{x} - \left(\sqrt{x}^2 (2\sqrt{x} + 1)\right)

Step 3

Identify a common factor

96%

101 rated

Answer

We notice that the terms have a common factor of x\sqrt{x} in the quadratic expression:

10+5xx(2x+1)\Rightarrow 10 + 5\sqrt{x} - \sqrt{x}(2\sqrt{x} + 1)

Thus, we can group:

=(10+5x)x(2x+1) = (10 + 5\sqrt{x}) - \sqrt{x}(2\sqrt{x} + 1)

Step 4

Cancel the common factor

98%

120 rated

Answer

The expression can now be simplified further by cancelling the common factor of (5x)(5 - \sqrt{x}):

(10+5x)(5x)\frac{(10 + 5\sqrt{x})}{(5 - \sqrt{x})}

Thus, our expression simplifies to:

2+x2 + \sqrt{x}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;