Photo AI

The binomial expansion of $(2 + 5x)^4$ is given by $(2 + 5x)^4 = 4 + 160x + Bx^{2} + 1000x^{3} + 625x^{4}$ - AQA - A-Level Maths Pure - Question 5 - 2022 - Paper 2

Question icon

Question 5

The-binomial-expansion-of-$(2-+-5x)^4$-is-given-by-$(2-+-5x)^4-=-4-+-160x-+-Bx^{2}-+-1000x^{3}-+-625x^{4}$-AQA-A-Level Maths Pure-Question 5-2022-Paper 2.png

The binomial expansion of $(2 + 5x)^4$ is given by $(2 + 5x)^4 = 4 + 160x + Bx^{2} + 1000x^{3} + 625x^{4}$. 5 (a) Find the value of A and the value of B. 5 (b) Sho... show full transcript

Worked Solution & Example Answer:The binomial expansion of $(2 + 5x)^4$ is given by $(2 + 5x)^4 = 4 + 160x + Bx^{2} + 1000x^{3} + 625x^{4}$ - AQA - A-Level Maths Pure - Question 5 - 2022 - Paper 2

Step 1

Find the value of A and the value of B.

96%

114 rated

Answer

To find the values of A and B, we need to compare the coefficients in the binomial expansion.

Using the binomial theorem, we expand (2+5x)4(2 + 5x)^{4}:

A=4A = 4 (this is the constant term when x=0x = 0) and the other non-constant terms give:

For x2x^{2} term: From expansion, we have:

B=(42)(2)2(5x)2=6425=600.B = \binom{4}{2} \cdot (2)^{2} \cdot (5x)^{2} = 6 \cdot 4 \cdot 25 = 600.

Thus, we find: A=16A = 16 B=600B = 600.

Step 2

Show that (2 + 5x)^{4} - (2 - 5x)^{4} = Cx + D x^{3}$ where C and D are constants to be found.

99%

104 rated

Answer

To demonstrate the equality, we need to calculate (2+5x)4(2 + 5x)^{4} and (25x)4(2 - 5x)^{4}. Using the binomial theorem:

(2+5x)4=16+160x+600x2+1000x3+625x4(2 + 5x)^{4} = 16 + 160x + 600x^{2} + 1000x^{3} + 625x^{4} (25x)4=16160x+600x21000x3+625x4(2 - 5x)^{4} = 16 - 160x + 600x^{2} - 1000x^{3} + 625x^{4}

When we subtract these expressions:

(2+5x)4(25x)4=(16+160x+600x2+1000x3+625x4)(16160x+600x21000x3+625x4)(2 + 5x)^{4} - (2 - 5x)^{4} = (16 + 160x + 600x^{2} + 1000x^{3} + 625x^{4}) - (16 - 160x + 600x^{2} - 1000x^{3} + 625x^{4})

This simplifies to: 320x+2000x3320x + 2000x^{3} Hence, we identify C and D as C=320C = 320 and D=2000D = 2000.

Step 3

Hence, or otherwise, find ∫((2 + 5x)^{4} - (2 - 5x)^{4}) dx.

96%

101 rated

Answer

To find the integral, we will use the result from part (b):

We can express the integral as: (320x+2000x3)dx\int (320x + 2000x^{3}) dx

Applying the integration rules gives us: =320xdx+2000x3dx= \int 320x \: dx + \int 2000x^{3} \: dx =320x22+2000x44+c= 320 \cdot \frac{x^{2}}{2} + 2000 \cdot \frac{x^{4}}{4} + c =160x2+500x4+c= 160x^{2} + 500x^{4} + c Hence, the final result is: 160x2+500x4+c160x^{2} + 500x^{4} + c.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;