Photo AI

P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10) - AQA - A-Level Maths Pure - Question 8 - 2019 - Paper 1

Question icon

Question 8

P(n)-=-\sum_{k=0}^{n}-k^3---\sum_{k=0}^{n-1}-k^3-\text{-where-}-n-\text{-is-a-positive-integer.}--8-(a)-Find-P(3)-and-P(10)-AQA-A-Level Maths Pure-Question 8-2019-Paper 1.png

P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10). 8 (b) Solve the equation P(n) = 1.25 \t... show full transcript

Worked Solution & Example Answer:P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 \text{ where } n \text{ is a positive integer.} 8 (a) Find P(3) and P(10) - AQA - A-Level Maths Pure - Question 8 - 2019 - Paper 1

Step 1

Find P(3)

96%

114 rated

Answer

To find P(3), we substitute n = 3 into the formula:

P(3)=k=03k3k=02k3P(3) = \sum_{k=0}^{3} k^3 - \sum_{k=0}^{2} k^3

Calculating the sums:

  • ( \sum_{k=0}^{3} k^3 = 0^3 + 1^3 + 2^3 + 3^3 = 0 + 1 + 8 + 27 = 36 )
  • ( \sum_{k=0}^{2} k^3 = 0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 )

Thus,

P(3)=369=27.P(3) = 36 - 9 = 27.

Step 2

Find P(10)

99%

104 rated

Answer

To find P(10), we substitute n = 10 into the formula:

P(10)=k=010k3k=09k3P(10) = \sum_{k=0}^{10} k^3 - \sum_{k=0}^{9} k^3

Calculating the sums:

  • ( \sum_{k=0}^{10} k^3 = 0^3 + 1^3 + 2^3 + ... + 10^3 = 0 + 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = 3025 )
  • ( \sum_{k=0}^{9} k^3 = 0^3 + 1^3 + 2^3 + ... + 9^3 = 0 + 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 = 2025 )

Thus,

P(10)=30252025=1000.P(10) = 3025 - 2025 = 1000.

Step 3

Solve the equation P(n) = 1.25 \times 10^8

96%

101 rated

Answer

To solve the equation ( P(n) = 1.25 \times 10^8 ), we first express P(n) in terms of n:

P(n)=k=0nk3k=0n1k3=n3P(n) = \sum_{k=0}^{n} k^3 - \sum_{k=0}^{n-1} k^3 = n^3

We set this equal to the given number:

n3=1.25×108.n^3 = 1.25 \times 10^8.

Taking the cube root of both sides gives:

n=1.25×1083.n = \sqrt[3]{1.25 \times 10^8}.

Calculating gives:

n500.n \approx 500.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;