Photo AI

6 (a) Find the first two terms, in ascending powers of x, of the binomial expansion of \( \left( 1 - \frac{x}{2} \right)^{\frac{1}{2}} \) 6 (b) Hence, for small values of x, show that \( sin(4x) + \sqrt{\cos x} \approx A + Bx + Cx^2 \) where A, B and C are constants to be found. - AQA - A-Level Maths Pure - Question 6 - 2022 - Paper 1

Question icon

Question 6

6-(a)-Find-the-first-two-terms,-in-ascending-powers-of-x,-of-the-binomial-expansion-of-\(-\left(-1---\frac{x}{2}-\right)^{\frac{1}{2}}-\)--6-(b)-Hence,-for-small-values-of-x,-show-that-\(-sin(4x)-+-\sqrt{\cos-x}-\approx-A-+-Bx-+-Cx^2-\)-where-A,-B-and-C-are-constants-to-be-found.-AQA-A-Level Maths Pure-Question 6-2022-Paper 1.png

6 (a) Find the first two terms, in ascending powers of x, of the binomial expansion of \( \left( 1 - \frac{x}{2} \right)^{\frac{1}{2}} \) 6 (b) Hence, for small val... show full transcript

Worked Solution & Example Answer:6 (a) Find the first two terms, in ascending powers of x, of the binomial expansion of \( \left( 1 - \frac{x}{2} \right)^{\frac{1}{2}} \) 6 (b) Hence, for small values of x, show that \( sin(4x) + \sqrt{\cos x} \approx A + Bx + Cx^2 \) where A, B and C are constants to be found. - AQA - A-Level Maths Pure - Question 6 - 2022 - Paper 1

Step 1

Find the first two terms, in ascending powers of x, of the binomial expansion of \( \left( 1 - \frac{x}{2} \right)^{\frac{1}{2}} \)

96%

114 rated

Answer

To find the first two terms of the binomial expansion of ( \left( 1 - \frac{x}{2} \right)^{\frac{1}{2}} ), we use the binomial theorem:

[ (1 + u)^n = 1 + nu + \frac{n(n-1)}{2!}u^2 + \cdots ] where ( u = -\frac{x}{2} ) and ( n = \frac{1}{2} ).

First term: [ 1 ]

Second term: [ \frac{1}{2} \left(-\frac{x}{2}\right) = -\frac{x}{4} ]

Thus, the first two terms are: [ 1 - \frac{x}{4} ]

Step 2

Hence, for small values of x, show that \( sin(4x) + \sqrt{\cos x} \approx A + Bx + Cx^2 \)

99%

104 rated

Answer

For small values of x, we can use the approximations:

[ sin(kx) \approx kx \quad \text{and} \quad \cos x \approx 1 - \frac{x^2}{2} ]

Applying these:

  1. For (sin(4x)): [ sin(4x) \approx 4x ]

  2. For (\sqrt{\cos x}): [ \sqrt{\cos x} \approx \sqrt{1 - \frac{x^2}{2}} \approx 1 - \frac{x^2}{4} \quad (using ; \sqrt{1-u}\approx 1 - \frac{u}{2} ; for ; small ; u) ]

Combining these: [ sin(4x) + \sqrt{\cos x} \approx 4x + \left(1 - \frac{x^2}{4}\right) ]

Thus: [ sin(4x) + \sqrt{\cos x} \approx 1 + 4x - \frac{x^2}{4} ]

From this, we identify constants:

  • A = 1
  • B = 4
  • C = -(\frac{1}{4})

Hence, the required form is: [ sin(4x) + \sqrt{\cos x} \approx A + Bx + Cx^2 ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;