Photo AI

A curve has equation $y = 2x \, ext{cos} \, 3x + (3x^2 - 4) \, ext{sin} \, 3x.$ 8 (a) Find $\frac{dy}{dx},$ giving your answer in the form $(mx^2 + n) \text{cos} \, 3x,$ where $m$ and $n$ are integers - AQA - A-Level Maths Pure - Question 8 - 2017 - Paper 2

Question icon

Question 8

A-curve-has-equation---$y-=-2x-\,--ext{cos}-\,-3x-+-(3x^2---4)-\,--ext{sin}-\,-3x.$----8-(a)-Find-$\frac{dy}{dx},$-giving-your-answer-in-the-form-$(mx^2-+-n)-\text{cos}-\,-3x,$-where-$m$-and-$n$-are-integers-AQA-A-Level Maths Pure-Question 8-2017-Paper 2.png

A curve has equation $y = 2x \, ext{cos} \, 3x + (3x^2 - 4) \, ext{sin} \, 3x.$ 8 (a) Find $\frac{dy}{dx},$ giving your answer in the form $(mx^2 + n) \text{c... show full transcript

Worked Solution & Example Answer:A curve has equation $y = 2x \, ext{cos} \, 3x + (3x^2 - 4) \, ext{sin} \, 3x.$ 8 (a) Find $\frac{dy}{dx},$ giving your answer in the form $(mx^2 + n) \text{cos} \, 3x,$ where $m$ and $n$ are integers - AQA - A-Level Maths Pure - Question 8 - 2017 - Paper 2

Step 1

Find $\frac{dy}{dx},$ giving your answer in the form $(mx^2 + n) \text{cos} \, 3x$

96%

114 rated

Answer

To find the derivative dydx,\frac{dy}{dx}, we will use the product rule. The equation of the curve is:

y=2xcos3x+(3x24)sin3x.y = 2x \cos 3x + (3x^2 - 4) \sin 3x.

We differentiate each term separately:

  1. For the first term, 2xcos3x2x \cos 3x, we apply the product rule: ddx(2xcos3x)=2cos3x2x(3sin3x)=2cos3x6xsin3x.\frac{d}{dx}(2x \cos 3x) = 2 \cos 3x - 2x(3 \sin 3x) = 2 \cos 3x - 6x \sin 3x.

  2. For the second term, (3x24)sin3x(3x^2 - 4) \sin 3x, we again apply the product rule: ddx((3x24)sin3x)=(6x)sin3x+(3x24)(3cos3x)=6xsin3x+3(3x24)cos3x.\frac{d}{dx}((3x^2 - 4) \sin 3x) = (6x) \sin 3x + (3x^2 - 4)(3 \cos 3x) = 6x \sin 3x + 3(3x^2 - 4) \cos 3x.

Next, we combine these results:

dydx=(2cos3x6xsin3x)+(6xsin3x+3(3x24)cos3x).\frac{dy}{dx} = (2 \cos 3x - 6x \sin 3x) + (6x \sin 3x + 3(3x^2 - 4) \cos 3x).

The terms 6xsin3x-6x \sin 3x and 6xsin3x6x \sin 3x cancel out, yielding:

dydx=(2+3(3x24))cos3x=(9x210)cos3x.\frac{dy}{dx} = (2 + 3(3x^2 - 4)) \cos 3x = (9x^2 - 10) \cos 3x.

Thus, we have expressed dydx\frac{dy}{dx} in the desired form: where m=9m = 9 and n=10.n = -10.

Step 2

Show that the x-coordinates of the points of inflection of the curve satisfy the equation $\text{cot} \, 3x = \frac{9x^2 - 10}{6x}$

99%

104 rated

Answer

To find the x-coordinates of the points of inflection, we need to set the second derivative d2ydx2\frac{d^2y}{dx^2} to zero.

First, we differentiate the first derivative dydx\frac{dy}{dx}:

dydx=(9x210)cos3x.\frac{dy}{dx} = (9x^2 - 10) \cos 3x.

Using the product rule again, we have:

d2ydx2=ddx((9x210)cos3x)=(18x)cos3x+(9x210)(3sin3x).\frac{d^2y}{dx^2} = \frac{d}{dx}((9x^2 - 10) \cos 3x) = (18x) \cos 3x + (9x^2 - 10)(-3 \sin 3x).

Setting this equal to zero for points of inflection:

0=(18xcos3x3(9x210)sin3x).0 = (18x \cos 3x - 3(9x^2 - 10) \sin 3x).

Rearranging gives:

18xcos3x=3(9x210)sin3x.18x \cos 3x = 3(9x^2 - 10) \sin 3x.

Dividing both sides by 3xcos3x3x \cos 3x (assuming x0x \neq 0), we get:

6=(9x210)sin3xxcos3x.6 = \frac{(9x^2 - 10) \sin 3x}{x \cos 3x}.

Taking cotangent of both sides gives:

cot3x=9x2106x,\text{cot} \, 3x = \frac{9x^2 - 10}{6x},

thus proving the relationship.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;