Photo AI

5 (a) Sketch the graph of $y = ext{sin } 2x$ for $0^{ ext{}} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } ext{ } orall x$ $0^{ ext{}} ext{ } ext{ } ext{ } ext{ } \leq x \leq 360^{ ext{}} ext{ }$ [2 marks] 5 (b) The equation 5 (b) The equation $ ext{sin } 2x = A$ has exactly two solutions for $0^{ ext{}} \leq x \leq 360^{ ext{}}$ State the possible values of $A$ - AQA - A-Level Maths Pure - Question 5 - 2022 - Paper 3

Question icon

Question 5

5-(a)-Sketch-the-graph-of--$y-=--ext{sin-}-2x$--for-$0^{-ext{}}-ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}-\text{-}---ext{-}-orall-x$---$0^{-ext{}}-ext{-}--ext{-}--ext{-}--ext{-}-\leq-x-\leq-360^{-ext{}}-ext{-}$--[2-marks]--5-(b)-The-equation--5-(b)-The-equation--$-ext{sin-}-2x-=-A$--has-exactly-two-solutions-for-$0^{-ext{}}-\leq-x-\leq-360^{-ext{}}$--State-the-possible-values-of-$A$-AQA-A-Level Maths Pure-Question 5-2022-Paper 3.png

5 (a) Sketch the graph of $y = ext{sin } 2x$ for $0^{ ext{}} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ ... show full transcript

Worked Solution & Example Answer:5 (a) Sketch the graph of $y = ext{sin } 2x$ for $0^{ ext{}} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } ext{ } orall x$ $0^{ ext{}} ext{ } ext{ } ext{ } ext{ } \leq x \leq 360^{ ext{}} ext{ }$ [2 marks] 5 (b) The equation 5 (b) The equation $ ext{sin } 2x = A$ has exactly two solutions for $0^{ ext{}} \leq x \leq 360^{ ext{}}$ State the possible values of $A$ - AQA - A-Level Maths Pure - Question 5 - 2022 - Paper 3

Step 1

Sketch the graph of $y = ext{sin } 2x$ for $0^{ ext{}} \leq x \leq 360^{ ext{}}$

96%

114 rated

Answer

  1. The function y=extsin2xy = ext{sin } 2x oscillates between -1 and 1.
  2. Since the amplitude of the sine function is 1, there will be peaks at these points:
    • At x=0extx = 0^{ ext{}}, y=0y = 0.
    • At x=90extx = 90^{ ext{}}, y=1y = 1.
    • At x=180extx = 180^{ ext{}}, y=0y = 0.
    • At x=270extx = 270^{ ext{}}, y=1y = -1.
    • At x=360extx = 360^{ ext{}}, y=0y = 0.
  3. The graph completes one full period between 0ext0^{ ext{}} and 180ext180^{ ext{}}, and another between 180ext180^{ ext{}} and 360ext360^{ ext{}}.
  4. The sketch should reflect these points, showing a smooth wave pattern starting and ending at the origin with two complete oscillations within the defined interval.

Step 2

State the possible values of $A$

99%

104 rated

Answer

The equation extsin2x=A ext{sin } 2x = A will have two solutions when the value of AA lies within the range of the sine function, which oscillates between -1 and 1. Thus, the possible values of AA are:

1<A<1-1 < A < 1

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;