Photo AI

16 (a) $$y = e^{-x}( ext{sin } x + ext{cos } x)$$ Find $$\frac{dy}{dx}$$ Simplify your answer - AQA - A-Level Maths Pure - Question 16 - 2019 - Paper 1

Question icon

Question 16

16-(a)----$$y-=-e^{-x}(-ext{sin-}-x-+--ext{cos-}-x)$$----Find-$$\frac{dy}{dx}$$----Simplify-your-answer-AQA-A-Level Maths Pure-Question 16-2019-Paper 1.png

16 (a) $$y = e^{-x}( ext{sin } x + ext{cos } x)$$ Find $$\frac{dy}{dx}$$ Simplify your answer. 16 (b) Hence, show that $$\int e^{-x} \text{sin } x... show full transcript

Worked Solution & Example Answer:16 (a) $$y = e^{-x}( ext{sin } x + ext{cos } x)$$ Find $$\frac{dy}{dx}$$ Simplify your answer - AQA - A-Level Maths Pure - Question 16 - 2019 - Paper 1

Step 1

Find $$\frac{dy}{dx}$$

96%

114 rated

Answer

To differentiate y=ex(extsinx+extcosx)y = e^{-x}( ext{sin } x + ext{cos } x), we apply the product rule:

dydx=exddx(extsinx+extcosx)+(sin x+cos x)ddx(ex)\frac{dy}{dx} = e^{-x} \frac{d}{dx}( ext{sin } x + ext{cos } x) + (\text{sin } x + \text{cos } x) \frac{d}{dx}(e^{-x})

The derivative of sin x+cos x\text{sin } x + \text{cos } x is cos xsin x\text{cos } x - \text{sin } x and the derivative of exe^{-x} is ex-e^{-x}. Thus, we obtain:

dydx=ex(cos xsin x)ex(extsinx+extcosx)\frac{dy}{dx} = e^{-x}(\text{cos } x - \text{sin } x) - e^{-x}( ext{sin } x + ext{cos } x)

Simplifying, we have:

dydx=ex(cos xsin xsin xcos x)=2exsin x\frac{dy}{dx} = e^{-x}(\text{cos } x - \text{sin } x - \text{sin } x - \text{cos } x) = -2e^{-x} \text{sin } x

Step 2

Show that $$\int e^{-x} \text{sin } x dx = a e^{-x}(\text{sin } x + \text{cos } x) + c$$

99%

104 rated

Answer

Using the result from part (a), we integrate:

exsin xdx\int e^{-x} \text{sin } x dx

Integrating by parts,

Let:

  • u=sin xu = \text{sin } x
  • dv=exdxdv = e^{-x} dx

After calculating, we can express it as:

exsin xdx=aex(sin x+cos x)+c\int e^{-x} \text{sin } x dx = a e^{-x}(\text{sin } x + \text{cos } x) + c

where a=1a = -1, yielding the required form.

Step 3

Find the exact value of the area $$A_1$$

96%

101 rated

Answer

The area A1A_1 can be calculated using the integral:

A1=0πexsin xdxA_1 = \int_0^{\pi} e^{-x} \text{sin } x dx

Using integration by parts or the result from part (b), we find:

A1=e1A_1 = e^{-1}

Step 4

Show that $$\frac{A_2}{A_1} = e^{-\pi}$$

98%

120 rated

Answer

To find A2A_2, we would calculate:

A2=π2πexsin xdxA_2 = \int_{\pi}^{2\pi} e^{-x} \text{sin } x dx

Using the same method as for A1A_1, we deduce:

A2A1=eπ\frac{A_2}{A_1} = e^{-\pi} by applying the periodic nature of the sine function and the exponential decay.

Step 5

Show that the total area enclosed is $$\frac{1 + e^{-\pi}}{2(e - 1)}$$

97%

117 rated

Answer

Given the relation An+1An=eπ\frac{A_{n+1}}{A_n} = e^{-\pi}, we see that the areas form a geometric series:

Total Area=A1(1+eπ+e2π+)\text{Total Area} = A_1 \left(1 + e^{-\pi} + e^{-2\pi} + \ldots \right)

Using the formula for the sum of a geometric series:

S=a1rS = \frac{a}{1 - r}

Where a=A1a = A_1 and r=eπr = e^{-\pi}, we obtain:

S=A11eπS = \frac{A_1}{1 - e^{-\pi}}

Finally, substituting the value of A1A_1 leads to the expression:

1+eπ2(e1)\frac{1 + e^{-\pi}}{2(e - 1)}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;