Photo AI

The integral $\\int_{2}^{3} x^{3} \\ln(2x) \, dx$ can be written in the form $p \\ln 2 + q$, where $p$ and $q$ are rational numbers - AQA - A-Level Maths Pure - Question 4 - 2019 - Paper 3

Question icon

Question 4

The-integral-$\\int_{2}^{3}-x^{3}-\\ln(2x)-\,-dx$-can-be-written-in-the-form-$p-\\ln-2-+-q$,-where-$p$-and-$q$-are-rational-numbers-AQA-A-Level Maths Pure-Question 4-2019-Paper 3.png

The integral $\\int_{2}^{3} x^{3} \\ln(2x) \, dx$ can be written in the form $p \\ln 2 + q$, where $p$ and $q$ are rational numbers. Find $p$ and $q$.

Worked Solution & Example Answer:The integral $\\int_{2}^{3} x^{3} \\ln(2x) \, dx$ can be written in the form $p \\ln 2 + q$, where $p$ and $q$ are rational numbers - AQA - A-Level Maths Pure - Question 4 - 2019 - Paper 3

Step 1

Step 1: Choose the method of integration

96%

114 rated

Answer

We will use integration by parts, which is defined by the formula: udv=uvvdu\int u \, dv = uv - \int v \, du. Here, we can choose:

  • u=ln(2x)u = \ln(2x)
  • dv=x3dxdv = x^{3} \, dx

Step 2

Step 2: Differentiate and integrate to find $du$ and $v$

99%

104 rated

Answer

Differentiating and integrating gives us:

  • du=2xdxdu = \frac{2}{x} \, dx
  • v=x44v = \frac{x^{4}}{4}

Step 3

Step 3: Apply integration by parts formula

96%

101 rated

Answer

Substituting into the integration by parts formula: x3ln(2x)dx=(ln(2x)x44)x442xdx\int x^{3} \\ln(2x) \, dx = \left( \ln(2x) \cdot \frac{x^{4}}{4} \right) - \int \frac{x^{4}}{4} \cdot \frac{2}{x} \, dx This simplifies to: x3ln(2x)dx=(ln(2x)x44)x32dx\int x^{3} \\ln(2x) \, dx = \left( \ln(2x) \cdot \frac{x^{4}}{4} \right) - \int \frac{x^{3}}{2} \, dx

Step 4

Step 4: Evaluate the resulting integral

98%

120 rated

Answer

Now, we compute the integral: x32dx=x48\int \frac{x^{3}}{2} \, dx = \frac{x^{4}}{8} Thus, we have: x3ln(2x)dx=x44ln(2x)x416+C\int x^{3} \\ln(2x) \, dx = \frac{x^{4}}{4} \ln(2x) - \frac{x^{4}}{16} + C This can be rewritten as: x44ln(2)+x44ln(x)x416+C\frac{x^{4}}{4} \ln(2) + \frac{x^{4}}{4} \ln(x) - \frac{x^{4}}{16} + C

Step 5

Step 5: Substitute the limits and find $p$ and $q$

97%

117 rated

Answer

Substituting the limits from 22 to 33, we find:

  1. When x=3x = 3: 344ln(6)3416\frac{3^{4}}{4} \ln(6) - \frac{3^{4}}{16}
  2. When x=2x = 2: 244ln(4)2416\frac{2^{4}}{4} \ln(4) - \frac{2^{4}}{16} Evaluating these, we find:
  • p=344244=8144=81164=654p = \frac{3^{4}}{4} - \frac{2^{4}}{4} = \frac{81}{4} - 4 = \frac{81 - 16}{4} = \frac{65}{4}
  • q=(8116+4)(1616+1)q = \left(-\frac{81}{16} + 4\right) - \left(-\frac{16}{16} + 1\right) Calculating gives us the values of pp and qq.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;