Photo AI

A curve is defined by the parametric equations $x = ext{cos} heta$ and $y = ext{sin} heta$ where $0 leq heta leq 2 ext{π}$ - AQA - A-Level Maths Pure - Question 1 - 2022 - Paper 1

Question icon

Question 1

A-curve-is-defined-by-the-parametric-equations---$x-=--ext{cos}--heta$-and-$y-=--ext{sin}--heta$-where-$0--leq--heta--leq-2-ext{π}$-AQA-A-Level Maths Pure-Question 1-2022-Paper 1.png

A curve is defined by the parametric equations $x = ext{cos} heta$ and $y = ext{sin} heta$ where $0 leq heta leq 2 ext{π}$. Which of the options shown bel... show full transcript

Worked Solution & Example Answer:A curve is defined by the parametric equations $x = ext{cos} heta$ and $y = ext{sin} heta$ where $0 leq heta leq 2 ext{π}$ - AQA - A-Level Maths Pure - Question 1 - 2022 - Paper 1

Step 1

Identify the parametric equations

96%

114 rated

Answer

The given parametric equations are:

  • x=extcoshetax = ext{cos} heta
  • y=extsinhetay = ext{sin} heta

Step 2

Find the Cartesian equation

99%

104 rated

Answer

To eliminate the parameter heta heta, we can use the Pythagorean identity: extcos2heta+extsin2heta=1 ext{cos}^2 heta + ext{sin}^2 heta = 1 Substituting xx and yy into this identity results in: x2+y2=1x^2 + y^2 = 1

Step 3

Select the correct option

96%

101 rated

Answer

Among the options given, the correct Cartesian equation is: x2+y2=1x^2 + y^2 = 1

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;