Photo AI

A bob of mass 0.50 kg is suspended from the end of a piece of string 0.45 m long - AQA - A-Level Physics - Question 30 - 2017 - Paper 1

Question icon

Question 30

A-bob-of-mass-0.50-kg-is-suspended-from-the-end-of-a-piece-of-string-0.45-m-long-AQA-A-Level Physics-Question 30-2017-Paper 1.png

A bob of mass 0.50 kg is suspended from the end of a piece of string 0.45 m long. The bob is rotated in a vertical circle at a constant rate of 120 revolutions per m... show full transcript

Worked Solution & Example Answer:A bob of mass 0.50 kg is suspended from the end of a piece of string 0.45 m long - AQA - A-Level Physics - Question 30 - 2017 - Paper 1

Step 1

Calculate the centripetal acceleration

96%

114 rated

Answer

First, we need to calculate the linear velocity of the bob. Given that the bob completes 120 revolutions per minute, we can convert this to radians per second:

  1. Convert revolutions per minute (rpm) to radians per second (rad/s):

    Angular velocityω=120 rev/min×2π extrad1 extrev×1 extmin60 exts=12.57 rad/s\text{Angular velocity} \omega = 120 \text{ rev/min} \times \frac{2\pi \ ext{rad}}{1 \ ext{rev}} \times \frac{1 \ ext{min}}{60 \ ext{s}} = 12.57 \text{ rad/s}

  2. The linear velocity vv is given by:

    v=rωv = r\omega, where r=0.45 mr = 0.45\text{ m}:

    v=0.45 m×12.57 rad/s5.65 m/sv = 0.45 \text{ m} \times 12.57 \text{ rad/s} \approx 5.65 \text{ m/s}

  3. The centripetal acceleration aca_c can now be calculated:

    ac=v2r=(5.65 m/s)20.45 m71.0 m/s2a_c = \frac{v^2}{r} = \frac{(5.65 \text{ m/s})^2}{0.45 \text{ m}} \approx 71.0 \text{ m/s}^2

Step 2

Apply Newton's second law of motion

99%

104 rated

Answer

When the bob is at the bottom of the circle, the tension TT in the string must support both the weight of the bob and provide the centripetal force required for circular motion:

Tmg=macT - mg = ma_c

Rearranging gives us:

T=mg+macT = mg + ma_c

Now, substituting in the known values:

  • Mass m=0.50 kgm = 0.50 \text{ kg}
  • Acceleration due to gravity g=9.81 m/s2g = 9.81 \text{ m/s}^2
  • Centripetal acceleration ac71.0 m/s2a_c \approx 71.0 \text{ m/s}^2

Substitute:

T=(0.50 kg)(9.81 m/s2)+(0.50 kg)(71.0 m/s2)T = (0.50 \text{ kg})(9.81 \text{ m/s}^2) + (0.50 \text{ kg})(71.0 \text{ m/s}^2)

Calculating gives:

T4.905 N+35.5 N40.41 NT \approx 4.905 \text{ N} + 35.5 \text{ N} \approx 40.41 \text{ N}

Step 3

Select the correct answer

96%

101 rated

Answer

According to the calculated values, the tension in the string when the bob is at the bottom of the circle is approximately 40.41 N, which corresponds to option D: 40 N.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;