Photo AI

A light-emitting diode (LED) emits light over a narrow range of wavelengths - AQA - A-Level Physics - Question 2 - 2021 - Paper 3

Question icon

Question 2

A-light-emitting-diode-(LED)-emits-light-over-a-narrow-range-of-wavelengths-AQA-A-Level Physics-Question 2-2021-Paper 3.png

A light-emitting diode (LED) emits light over a narrow range of wavelengths. These wavelengths are distributed about a peak wavelength $ ext{ } ext{ } ext{ } ext{ } ... show full transcript

Worked Solution & Example Answer:A light-emitting diode (LED) emits light over a narrow range of wavelengths - AQA - A-Level Physics - Question 2 - 2021 - Paper 3

Step 1

Determine, N, the number of lines per metre on the grating.

96%

114 rated

Answer

To determine the number of lines per metre on the grating, we will apply the grating equation:
dimesextsin(heta)=mimesextextextextextextextextextextextextextextextextextextextextextextextextextextextd imes ext{sin}( heta) = m imes ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }
where:

  • dd is the grating spacing (distance between adjacent lines),
  • mm is the order of the maximum (5 in this case),
  • heta heta is the angle of diffraction (76.3°).
    First, we calculate dd: d = rac{ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }}{ ext{sin}(76.3°)}
    Using this to find:
    d ext{ } ext{ } ext{ }= ext{ } ext{ } ext{ } $0.0200 ext{ mm} = 2 imes 10^{-5} ext{ m}$. To find $N$, we use the formula: N = rac{1}{d} Thus: Thus: N = rac{1}{2 imes 10^{-5}} = 5.00 imes 10^{4} ext{ lines/m}$$

Step 2

Suggest one possible disadvantage of using the fifth-order maximum to determine N.

99%

104 rated

Answer

One possible disadvantage of using the fifth-order maximum is that the 5th5^{th} maximum may be less visible or fainter compared to lower-order maxima. This could lead to less accurate measurements due to lower intensity and visibility issues.

Step 3

Determine, using Figure 4, V_A for L_R.

96%

101 rated

Answer

To find VAV_A for extLR ext{L}_R, we need to extrapolate the linear region of the current-voltage characteristic for extLR ext{L}_R from Figure 4. The intersection point where this extrapolation meets the horizontal axis indicates the activation voltage. Based on the graph, we observe that this point occurs at approximately VA=1.80extVV_A = 1.80 ext{ V}.

Step 4

Deduce a value for the Planck constant based on the data given about the LEDs.

98%

120 rated

Answer

From the equation that describes the activation voltage, we use the known value of VAV_A for extLG ext{L}_G at 2.00 V to calculate the Planck constant hh: Using the formula:
V_A = rac{hc}{e ext{ } ext{ }}
We can rearrange this to solve for hh: h = rac{V_A imes e}{c}
Substituting values with:

  • VA=2.00extVV_A = 2.00 ext{ V},
  • c=3.00imes108extm/sc = 3.00 imes 10^8 ext{ m/s},
  • e=1.60imes1019extCe = 1.60 imes 10^{-19} ext{ C}
    We find: h = rac{(2.00)(1.60 imes 10^{-19})}{(3.00 imes 10^8)} = 1.06 imes 10^{-34} ext{ Js}.
    Thus, the Planck constant can be approximated as hextextextextextextextextextext1.06imes1034extJsh ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 1.06 imes 10^{-34} ext{ J s}.

Step 5

Deduce the minimum value of R.

97%

117 rated

Answer

To deduce the minimum value of the resistor RR, we start from Ohm's law, acknowledging that: V=IRV = IR
From the circuit information, we have:

  • The total emf is 6.10extV6.10 ext{ V},
  • The maximum current through the LED extLR ext{L}_R is 21.0extmA=0.021extA21.0 ext{ mA} = 0.021 ext{ A}.
    Rearranging Ohm's law gives us: R = rac{V}{I}
    Thus, substituting in the values:
Thus, the minimum value of $R$ is approximately equal to $290 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }=290 ext{ }.$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;