Photo AI
Question 3
Figure 4 shows the structure of a violin and Figure 5 shows a close-up image of the tuning pegs. The strings are fixed at end A. The strings pass over a bridge and ... show full transcript
Step 1
Answer
A stationary wave is produced in a stretched string when it is plucked due to the interaction of two waves traveling in opposite directions. When the string is plucked, waves travel towards the fixed ends and are reflected back. These reflected waves interfere with the incoming waves, creating nodes (points of no displacement) at fixed ends and antinodes (points of maximum displacement) in between. This results in the formation of standing waves characterized by specific frequencies called harmonics.
Step 2
Answer
To show that the mass of a 1.0 m length of the string is about 4 × 10^{-4} kg, we can use the relationship between frequency, tension, and linear mass density:
Where:
Rearranging gives us:
Substituting the known values:
Thus, for a 1.0 m length, the mass would approximately be 4 × 10^{-4} kg.
Step 3
Answer
The speed of the waves in the string can be determined using the formula:
Where:
In the case of the first harmonic, the wavelength can be calculated as:
Thus, substituting:
Step 4
Answer
From Figure 6, the tension in the string is directly proportional to the extension. When the initial tension is 25 N, and based on the graph, we can determine the tension for different extensions. If the tension increases steadily with extension as shown, the tension will eventually become greater than the original tension as the string is stretched. Therefore, the relationship can be observed through linearity and should remain consistent up to the breaking point.
Step 5
Answer
To find the new frequency after rotating the tuning peg, we first calculate the new length of the string assuming the angle of rotation causes an increase in the effective length. The increase in string length is found through:
Then,
Now using the formula: Using the updated parameters, we can compute the new frequency, which will be greater than the original (greater than 370 Hz). Thus the final value should be determined by calculation.
Report Improved Results
Recommend to friends
Students Supported
Questions answered