Photo AI

Cobalt-60 has a half-life of 5.27 years - AQA - A-Level Physics - Question 30 - 2017 - Paper 2

Question icon

Question 30

Cobalt-60-has-a-half-life-of-5.27-years-AQA-A-Level Physics-Question 30-2017-Paper 2.png

Cobalt-60 has a half-life of 5.27 years. What is the total activity of 1.0 g of cobalt-60?

Worked Solution & Example Answer:Cobalt-60 has a half-life of 5.27 years - AQA - A-Level Physics - Question 30 - 2017 - Paper 2

Step 1

Calculate the number of moles in 1.0 g of cobalt-60

96%

114 rated

Answer

To find the number of moles, use the formula: n = rac{m}{M} where:

  • mm is the mass of cobalt-60 (1.0 g)
  • MM is the molar mass of cobalt-60 (approximately 60 g/mol)

Thus: n=1.0extg60extg/mol=0.01667extmolesn = \frac{1.0 ext{ g}}{60 ext{ g/mol}} = 0.01667 ext{ moles}

Step 2

Find the number of radioactive atoms in 1.0 g of cobalt-60

99%

104 rated

Answer

Using Avogadro's number (NA=6.022imes1023extatoms/molN_A = 6.022 imes 10^{23} ext{ atoms/mol}): N=n×NAN = n \times N_A Substituting the values: N=0.01667extmoles×6.022×1023extatoms/mol1.0×1022extatomsN = 0.01667 ext{ moles} \times 6.022 \times 10^{23} ext{ atoms/mol} \approx 1.0 \times 10^{22} ext{ atoms}

Step 3

Calculate the decay constant ($ frac{ ext{λ}}{ ext{s}}$)

96%

101 rated

Answer

The decay constant is calculated using the formula: ext{λ} = rac{ ext{ln}(2)}{t_{1/2}} where t1/2=5.27extyears=5.27×3.154×107extst_{1/2} = 5.27 ext{ years} = 5.27 \times 3.154 \times 10^7 ext{ s}. Thus: extλ=0.6935.27×3.154×1074.2×109exts1 ext{λ} = \frac{0.693}{5.27 \times 3.154 \times 10^7} \approx 4.2 \times 10^{-9} ext{ s}^{-1}

Step 4

Calculate the total activity

98%

120 rated

Answer

The activity (AA) can be calculated with: A=extλ×NA = ext{λ} \times N Substituting our values: A=(4.2×109exts1)×(1.0×1022extatoms)4.2×1013extBqA = (4.2 \times 10^{-9} ext{ s}^{-1}) \times (1.0 \times 10^{22} ext{ atoms}) \approx 4.2 \times 10^{13} ext{ Bq}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;