Photo AI

Two forces $(4i - 2j) \text{ N}$ and $(2i + qj) \text{ N}$ act on a particle $P$ of mass $1.5$ kg - Edexcel - A-Level Maths Mechanics - Question 2 - 2014 - Paper 2

Question icon

Question 2

Two-forces-$(4i---2j)-\text{-N}$-and-$(2i-+-qj)-\text{-N}$-act-on-a-particle-$P$-of-mass-$1.5$-kg-Edexcel-A-Level Maths Mechanics-Question 2-2014-Paper 2.png

Two forces $(4i - 2j) \text{ N}$ and $(2i + qj) \text{ N}$ act on a particle $P$ of mass $1.5$ kg. The resultant of these two forces is parallel to the vector $(2i +... show full transcript

Worked Solution & Example Answer:Two forces $(4i - 2j) \text{ N}$ and $(2i + qj) \text{ N}$ act on a particle $P$ of mass $1.5$ kg - Edexcel - A-Level Maths Mechanics - Question 2 - 2014 - Paper 2

Step 1

Find the value of q.

96%

114 rated

Answer

To determine the value of qq, we first find the resultant force from the two given forces:

The first force is F1=(4i2j) N{\mathbf{F_1}} = (4i - 2j) \text{ N}.

The second force is F2=(2i+qj) N{\mathbf{F_2}} = (2i + qj) \text{ N}.

The resultant force F{\mathbf{F}} is given by:

F=F1+F2=(4i2j)+(2i+qj)=(6i+(q2)j) N\mathbf{F} = \mathbf{F_1} + \mathbf{F_2} = (4i - 2j) + (2i + qj) = (6i + (q-2)j) \text{ N}

Since the resultant is parallel to the vector (2i+j)(2i + j), we can write the relationship:

62=q21\frac{6}{2} = \frac{q-2}{1}

This simplifies to:

6=2(q2)6 = 2(q - 2)

Expanding this yields:

6=2q46 = 2q - 4

Rearranging gives:

2q=102q = 10

Thus, we find:

q=5.q = 5.

Step 2

Find the speed of P at time t = 2 seconds.

99%

104 rated

Answer

To find the speed of particle PP at time t=2t = 2 seconds, we start with the acceleration. The resultant force F{\mathbf{F}} we calculated earlier is:

F=(6i+(52)j)=(6i+3j) N.\mathbf{F} = (6i + (5-2)j) = (6i + 3j) \text{ N}.

Using Newton's second law, F=ma\mathbf{F} = ma, where m=1.5kgm = 1.5 \, \text{kg}, we find the acceleration:

a=Fm=(6i+3j)1.5=(4i+2j) m s2.\mathbf{a} = \frac{\mathbf{F}}{m} = \frac{(6i + 3j)}{1.5} = (4i + 2j) \text{ m s}^{-2}.

Next, we calculate the velocity after 22 seconds:

The initial velocity u=(2i+4j) m s1\mathbf{u} = (-2i + 4j) \text{ m s}^{-1}, and the acceleration is a=(4i+2j) m s2\mathbf{a} = (4i + 2j) \text{ m s}^{-2}.

Using the equation of motion:

v=u+at,\mathbf{v} = \mathbf{u} + \mathbf{a}t,

Substituting in the values gives:

v=(2i+4j)+(4i+2j)(2)=(2i+4j)+(8i+4j)=(6i+8j) m s1.\mathbf{v} = (-2i + 4j) + (4i + 2j)(2) = (-2i + 4j) + (8i + 4j) = (6i + 8j) \text{ m s}^{-1}.

To find the speed, we calculate the magnitude of the velocity vector:

speed=(6)2+(8)2=36+64=100=10m s1.\text{speed} = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \, \text{m s}^{-1}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;