Photo AI

A ship S is moving with constant velocity $(-2.5 extbf{i} + 6 extbf{j})$ km h$^{-1}$ - Edexcel - A-Level Maths Mechanics - Question 7 - 2006 - Paper 1

Question icon

Question 7

A-ship-S-is-moving-with-constant-velocity-$(-2.5-extbf{i}-+-6-extbf{j})$-km-h$^{-1}$-Edexcel-A-Level Maths Mechanics-Question 7-2006-Paper 1.png

A ship S is moving with constant velocity $(-2.5 extbf{i} + 6 extbf{j})$ km h$^{-1}$. At time 1200, the position vector of S relative to a fixed origin O is $(16 ext... show full transcript

Worked Solution & Example Answer:A ship S is moving with constant velocity $(-2.5 extbf{i} + 6 extbf{j})$ km h$^{-1}$ - Edexcel - A-Level Maths Mechanics - Question 7 - 2006 - Paper 1

Step 1

Find the speed of S

96%

114 rated

Answer

To calculate the speed of S, use the formula for the magnitude of the velocity vector:

orm{(-2.5 extbf{i} + 6 extbf{j})} = rac{1}{h} ext{sqrt}{(-2.5)^2 + (6)^2}$$ $$= ext{sqrt}(6.25 + 36)$$ $$= ext{sqrt}(42.25)$$ $$= 6.5 ext{ km h}^{-1}$$

Step 2

Find the bearing on which S is moving

99%

104 rated

Answer

The bearing can be calculated using the arctangent function:

ext{Bearing} = 360 - ext{arctan} rac{(2.5)}{(6)} Calculating gives: =36022.62=337exto= 360 - 22.62 = 337^ ext{o}

Step 3

Find the position vector of R

96%

101 rated

Answer

To find the position vector of R at time 1500, calculate the position of S at that time:

At 1500: s=(16extbfi+5extbfj)+(3exthimes(2.5extbfi+6extbfj))s = (16 extbf{i} + 5 extbf{j}) + (3 ext{ h} imes (-2.5 extbf{i} + 6 extbf{j})) Calculate: s=(167.5)extbfi+(5+18)extbfjs = (16 - 7.5) extbf{i} + (5 + 18) extbf{j} =8.5extbfi+23extbfj= 8.5 extbf{i} + 23 extbf{j} Hence R = 8.5extbfi+23extbfj8.5 extbf{i} + 23 extbf{j}.

Step 4

an expression for the position vector of the ship t hours after 1400

98%

120 rated

Answer

For the time after 1400, the position vector can be expressed as:

s(t)=(11extbfi+17extbfj)+(texthours)imes(5extbfi)s(t) = (11 extbf{i} + 17 extbf{j}) + (t ext{ hours}) imes (5 extbf{i}) Therefore, s(t)=(11+5t)extbfi+17extbfjs(t) = (11 + 5t) extbf{i} + 17 extbf{j}

Step 5

the time when S will be due east of R

97%

117 rated

Answer

For S to be due east of R, the i-component of the position vector of S must equal the i-component of R. Setting: 11+5t=8.511 + 5t = 8.5 Solving gives: 5t=2.55t = -2.5 t=0.5t = -0.5 So S will be due east of R at 1512 hours.

Step 6

the distance of S from R at the time 1600

97%

121 rated

Answer

At 1600, find the position of S: s(2)=(11extbfi+17extbfj)+(2exthours)imes(5extbfi)s(2) = (11 extbf{i} + 17 extbf{j}) + (2 ext{ hours}) imes (5 extbf{i}) This gives: s(2)=(11+10)extbfi+17extbfj=21extbfi+17extbfjs(2) = (11 + 10) extbf{i} + 17 extbf{j} = 21 extbf{i} + 17 extbf{j} Now calculate the distance from R:

orm{(21 - 8.5) extbf{i} + (17 - 23) extbf{j}}$$ $$= orm{12.5 extbf{i} - 6 extbf{j}} = ext{sqrt}(12.5^2 + (-6)^2) = ext{sqrt}(156.25 + 36) = ext{sqrt}(192.25) \\ ext{approximately } 4.72 ext{ km}$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;