Photo AI

A vertical rope AB has its end B attached to the top of a scale pan - Edexcel - A-Level Maths Mechanics - Question 2 - 2016 - Paper 1

Question icon

Question 2

A-vertical-rope-AB-has-its-end-B-attached-to-the-top-of-a-scale-pan-Edexcel-A-Level Maths Mechanics-Question 2-2016-Paper 1.png

A vertical rope AB has its end B attached to the top of a scale pan. The scale pan has mass 0.5 kg and carries a brick of mass 1.5 kg, as shown in Figure 1. The scal... show full transcript

Worked Solution & Example Answer:A vertical rope AB has its end B attached to the top of a scale pan - Edexcel - A-Level Maths Mechanics - Question 2 - 2016 - Paper 1

Step 1

Find the tension in the rope AB.

96%

114 rated

Answer

To determine the tension TT in the rope AB, we consider the forces acting on the system (scale pan + brick).

  1. Identify the mass and acceleration: The total mass of the system is M=mpan+mbrick=0.5extkg+1.5extkg=2.0extkgM = m_{pan} + m_{brick} = 0.5 ext{ kg} + 1.5 ext{ kg} = 2.0 ext{ kg} The system is accelerated upward with a=0.5extm/s2a = 0.5 ext{ m/s}^2.

  2. Apply Newton's second law: We can write the equation of motion as: TMimesg=MimesaT - M imes g = M imes a Here, gg is the acceleration due to gravity (approximately 9.81extm/s29.81 ext{ m/s}^2). Therefore: T2.0imes9.81=2.0imes0.5T - 2.0 imes 9.81 = 2.0 imes 0.5 T19.62=1.0T - 19.62 = 1.0 T=20.62extNT = 20.62 ext{ N} Thus, the tension in the rope AB is approximately 20.6extN20.6 ext{ N}.

Step 2

Find the magnitude of the force exerted on the scale pan by the brick.

99%

104 rated

Answer

To find the force exerted on the scale pan by the brick, we can analyze the forces acting on just the brick:

  1. Consider the forces on the brick: The upward tension TT and the downward weight of the brick. The weight of the brick is: Wbrick=mbrickimesg=1.5extkgimes9.81extm/s2=14.715extNW_{brick} = m_{brick} imes g = 1.5 ext{ kg} imes 9.81 ext{ m/s}^2 = 14.715 ext{ N}

  2. Apply Newton's second law to the brick: TWbrick=mbrickimesaT - W_{brick} = m_{brick} imes a Substitute for tension: T14.715=1.5imes0.5T - 14.715 = 1.5 imes 0.5 Thus, T14.715=0.75T - 14.715 = 0.75 Therefore, T=15.465extNT = 15.465 ext{ N} So, the magnitude of the force exerted on the scale pan by the brick is approximately 15.5extN15.5 ext{ N}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;