To find the position vector, we need to integrate the velocity vector over time.
Using:
r(t)=r0+∫vdt
We have the initial position vector when t = 0:
r0=(−20i+20j)m
Now, integrating the velocity:
r(t)=r0+∫(6i−5j)dt=r0+(6ti−5tj)+C
Calculating when t = 4:
r(4)=(−20i+20j)+(6∗4i−5∗4j)
=(−20i+20j)+(24i−20j)
=(−20+24)i+(20−20)j
=4i+0j=4i(m)
Thus, the position vector of P when t = 4 is:
r(4)=4i+0j