Photo AI

10. (a) Use the substitution $x = u^2 + 1$ to show that \[ \int_1^0 \frac{3 \, dx}{(x-1)(3 + 2\sqrt{x - 1})} = \int_0^q \frac{6 \, du}{u(3 + 2u)} \] where $p$ and $q$ are positive constants to be found - Edexcel - A-Level Maths Pure - Question 12 - 2020 - Paper 1

Question icon

Question 12

10.-(a)-Use-the-substitution-$x-=-u^2-+-1$-to-show-that-----\[-\int_1^0-\frac{3-\,-dx}{(x-1)(3-+-2\sqrt{x---1})}-=-\int_0^q-\frac{6-\,-du}{u(3-+-2u)}-\]-----where-$p$-and-$q$-are-positive-constants-to-be-found-Edexcel-A-Level Maths Pure-Question 12-2020-Paper 1.png

10. (a) Use the substitution $x = u^2 + 1$ to show that \[ \int_1^0 \frac{3 \, dx}{(x-1)(3 + 2\sqrt{x - 1})} = \int_0^q \frac{6 \, du}{u(3 + 2u)} \] where $p... show full transcript

Worked Solution & Example Answer:10. (a) Use the substitution $x = u^2 + 1$ to show that \[ \int_1^0 \frac{3 \, dx}{(x-1)(3 + 2\sqrt{x - 1})} = \int_0^q \frac{6 \, du}{u(3 + 2u)} \] where $p$ and $q$ are positive constants to be found - Edexcel - A-Level Maths Pure - Question 12 - 2020 - Paper 1

Step 1

Use the substitution $x = u^2 + 1$

96%

114 rated

Answer

To use the substitution x=u2+1x = u^2 + 1, we first calculate the derivative:

dx=2udu.dx = 2u \, du.

For the limits of integration, when x=1x = 1, we have:

u=0.u = 0.

For x=0x = 0, we have:

u=1.u = -1.

Substituting into the integral, we get:

103dx(x1)(3+2x1)=013(2udu)(u2+11)(3+2u2). \int_1^0 \frac{3 \, dx}{(x - 1)(3 + 2\sqrt{x - 1})} = \int_0^{-1} \frac{3 \, (2u \, du)}{(u^2 + 1 - 1)(3 + 2\sqrt{u^2})}.

Simplifying further:

=016udu(u2)(3+2u)=016duu(3+2u).= \int_0^{-1} \frac{6 \, u \, du}{(u^2)(3 + 2u)} = \int_0^{-1} \frac{6 \, du}{u(3 + 2u)}.

Thus, we can define the constants as p=3p = 3 and q=1q = -1.

Step 2

Show that $\int_1^0 \frac{3 \, dx}{(x - 1)(3 + 2\sqrt{x - 1})} = \ln a$

99%

104 rated

Answer

Using the result from part (a), we continue from:

016duu(3+2u).\int_0^{-1} \frac{6 \, du}{u(3 + 2u)}.

We can break this down using partial fractions:

6u(3+2u)=Au+B3+2u.\frac{6}{u(3 + 2u)} = \frac{A}{u} + \frac{B}{3 + 2u}.

Solving for AA and BB, we find:

6=A(3+2u)+Bu6=3A+(2A+B)u.6 = A(3 + 2u) + Bu \Rightarrow 6 = 3A + (2A + B)u.

Setting coefficients equal gives:

  1. 3A=63A = 6
  2. 2A+B=02A + B = 0

From the first equation, we obtain A=2A = 2. Substituting into the second:

2(2)+B=0B=4.2(2) + B = 0 \Rightarrow B = -4.

Thus, we can rewrite the integral:

(2u43+2u)du=2lnu2ln3+2u+C.\int \left( \frac{2}{u} - \frac{4}{3 + 2u} \right) du = 2 \ln |u| - 2\ln |3 + 2u| + C.

Evaluating from 00 to 1-1, we find:

=lna,= \ln a,

where a=169a = \frac{16}{9}. Thus, we conclude with the final integral equating to:

ln169.\ln \frac{16}{9}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;