Photo AI

In this question you must show all stages of your working - Edexcel - A-Level Maths Pure - Question 15 - 2022 - Paper 1

Question icon

Question 15

In-this-question-you-must-show-all-stages-of-your-working-Edexcel-A-Level Maths Pure-Question 15-2022-Paper 1.png

In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. (a) Given that $$2 \, ext{sin}(... show full transcript

Worked Solution & Example Answer:In this question you must show all stages of your working - Edexcel - A-Level Maths Pure - Question 15 - 2022 - Paper 1

Step 1

Given that 2 sin(x - 60°) = cos(x - 30°) show that tan x = 3 √3

96%

114 rated

Answer

To prove that tanx=33\tan{x} = 3\sqrt{3} based on the equation, we start by applying the compound angle formulas:

  1. Expand the equation: 2sin(x60exto)=2(sin(x)cos(60exto)cos(x)sin(60exto))2 \text{sin}(x - 60^ ext{o}) = 2 \left( \text{sin}(x) \text{cos}(60^ ext{o}) - \text{cos}(x) \text{sin}(60^ ext{o}) \right) This gives: 2sin(x)122cos(x)322 \text{sin}(x) \cdot \frac{1}{2} - 2 \text{cos}(x) \cdot \frac{\sqrt{3}}{2} Thus, sin(x)3cos(x)\text{sin}(x) - \sqrt{3} \text{cos}(x)

  2. Simplify: sin(x)3cos(x)=cos(x30exto)\text{sin}(x) - \sqrt{3} \text{cos}(x) = \text{cos}(x - 30^ ext{o}) Expanding the right side gives us: cos(x)cos(30exto)+sin(x)sin(30exto)\text{cos}(x) \cdot \text{cos}(30^ ext{o}) + \text{sin}(x) \cdot \text{sin}(30^ ext{o}) leading to: cos(x)32+sin(x)12\text{cos}(x) \cdot \frac{\sqrt{3}}{2} + \text{sin}(x) \cdot \frac{1}{2}

  3. Setting the equations equal to each other: sin(x)3cos(x)=cos(x)32+sin(x)12\text{sin}(x) - \sqrt{3} \text{cos}(x) = \text{cos}(x) \cdot \frac{\sqrt{3}}{2} + \text{sin}(x) \cdot \frac{1}{2} Rearranging gives: sin(x)sin(x)12=cos(x)32+3cos(x)\text{sin}(x) - \text{sin}(x) \cdot \frac{1}{2} = \text{cos}(x) \cdot \frac{\sqrt{3}}{2} + \sqrt{3} \text{cos}(x) This simplifies to: 12sin(x)=(3+32)cos(x)\frac{1}{2} \text{sin}(x) = \left(\sqrt{3} + \frac{\sqrt{3}}{2}\right) \text{cos}(x)

  4. Divide both sides by cos(x) and simplify: tanx=33\tan{x} = 3\sqrt{3} Thus, showing the required relation.

Step 2

Hence or otherwise solve, for 0 ≤ x < 180° 2 sin 2θ = cos(2θ + 30°)

99%

104 rated

Answer

To solve the equation:

  1. Rewrite the equation: 2sin(2θ)=cos(2θ+30exto)2 \text{sin}(2\theta) = \text{cos}(2\theta + 30^ ext{o})

  2. Use the cosine angle addition formula: Rewrite the right side: cos(2θ+30exto)=cos(2θ)cos(30exto)sin(2θ)sin(30exto)\text{cos}(2\theta + 30^ ext{o}) = \text{cos}(2\theta) \text{cos}(30^ ext{o}) - \text{sin}(2\theta) \text{sin}(30^ ext{o}) This results in: cos(2θ)32sin(2θ)12\text{cos}(2\theta) \cdot \frac{\sqrt{3}}{2} - \text{sin}(2\theta) \cdot \frac{1}{2}

  3. Set the equations equal: Thus, we have: 2sin(2θ)=cos(2θ)32sin(2θ)122 \text{sin}(2\theta) = \text{cos}(2\theta) \cdot \frac{\sqrt{3}}{2} - \text{sin}(2\theta) \cdot \frac{1}{2} Which simplifies to: 2sin(2θ)+12sin(2θ)=32cos(2θ)2\text{sin}(2\theta) + \frac{1}{2}\text{sin}(2\theta) = \frac{\sqrt{3}}{2} \text{cos}(2\theta) or: 52sin(2θ)=32cos(2θ)\frac{5}{2} \text{sin}(2\theta) = \frac{\sqrt{3}}{2} \text{cos}(2\theta) Thus: tan(2θ)=35\tan(2\theta) = \frac{\sqrt{3}}{5}

  4. Find angles: Solve for 2θ2\theta: 2θ=tan1(35)2\theta = \tan^{-1}\left(\frac{\sqrt{3}}{5}\right) This gives a solution approximately: 2θ0.3462\theta \approx 0.346 Thus, θ0.173o\theta \approx 0.173\text{o}

  5. Use periodicity for other solutions: Add heta=180exto heta = 180^ ext{o} to find more values.

  6. Final values: Convert to one decimal place for the final answer.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;