Photo AI

Show that $ h(x) = \frac{2x}{x^2 + 5} - \frac{4}{x^2 + 5} - \frac{18}{(x^2 + 5)(x + 2)} $, for $ x \geq 0 $ - Edexcel - A-Level Maths Pure - Question 28 - 2013 - Paper 1

Question icon

Question 28

Show-that-$-h(x)-=-\frac{2x}{x^2-+-5}---\frac{4}{x^2-+-5}---\frac{18}{(x^2-+-5)(x-+-2)}-$,-for-$-x-\geq-0-$-Edexcel-A-Level Maths Pure-Question 28-2013-Paper 1.png

Show that $ h(x) = \frac{2x}{x^2 + 5} - \frac{4}{x^2 + 5} - \frac{18}{(x^2 + 5)(x + 2)} $, for $ x \geq 0 $. Hence, or otherwise, find $ h'(x) $ in its simplest for... show full transcript

Worked Solution & Example Answer:Show that $ h(x) = \frac{2x}{x^2 + 5} - \frac{4}{x^2 + 5} - \frac{18}{(x^2 + 5)(x + 2)} $, for $ x \geq 0 $ - Edexcel - A-Level Maths Pure - Question 28 - 2013 - Paper 1

Step 1

Show that $ h(x) = \frac{2x}{x^2 + 5} - \frac{4}{x^2 + 5} - \frac{18}{(x^2 + 5)(x + 2)} $

96%

114 rated

Answer

To combine the fractions, we will find a common denominator, which is (x2+5)(x+2)(x^2 + 5)(x + 2). Thus, we can rewrite each fraction:

  1. The first term becomes: 2x(x+2)(x2+5)(x+2)\frac{2x(x + 2)}{(x^2 + 5)(x + 2)}

  2. The second term becomes: 4(x+2)(x2+5)(x+2)\frac{4(x + 2)}{(x^2 + 5)(x + 2)}

  3. The third term remains the same: 18(x2+5)(x+2)-\frac{18}{(x^2 + 5)(x + 2)}

Combining these, we have: 2x(x+2)4(x+2)18(x2+5)(x+2)\frac{2x(x + 2) - 4(x + 2) - 18}{(x^2 + 5)(x + 2)} =2x2+4x4x818(x2+5)(x+2)= \frac{2x^2 + 4x - 4x - 8 - 18}{(x^2 + 5)(x + 2)} =2x226(x2+5)(x+2)= \frac{2x^2 - 26}{(x^2 + 5)(x + 2)} =2(x213)(x2+5)(x+2)= \frac{2(x^2 - 13)}{(x^2 + 5)(x + 2)}

Thus, h(x)=2(x213)(x2+5)(x+2)h(x) = \frac{2(x^2 - 13)}{(x^2 + 5)(x + 2)}.

Step 2

Hence, or otherwise, find $ h'(x) $ in its simplest form.

99%

104 rated

Answer

We can use the quotient rule to find the derivative of h(x)h(x):

If u=2(x213)u = 2(x^2 - 13) and v=(x2+5)(x+2)v = (x^2 + 5)(x + 2), then:

h(x)=uvuvv2h'(x) = \frac{u'v - uv'}{v^2}

Calculating uu' and vv':

  • u=4xu' = 4x.
  • We apply the product rule to find vv':

v=(x2+5)(x+2)v = (x^2 + 5)(x + 2) v=(2x)(x+2)+(x2+5)(1)v' = (2x)(x + 2) + (x^2 + 5)(1) =2x2+4x+x2+5= 2x^2 + 4x + x^2 + 5 =3x2+4x+5= 3x^2 + 4x + 5

Thus, applying these in the quotient rule gives us: h(x)=4x((x2+5)(x+2))2(x213)(3x2+4x+5)((x2+5)(x+2))2h'(x) = \frac{4x((x^2 + 5)(x + 2)) - 2(x^2 - 13)(3x^2 + 4x + 5)}{((x^2 + 5)(x + 2))^2}

This expression can be simplified to find the simplest form.

Step 3

Calculate the range of $ h(x) $.

96%

101 rated

Answer

To find the range of h(x)h(x), we need to examine its behavior as x0x \to 0 and as xx \to \infty.

  1. As x0x \to 0: h(0)=2(0)26(0+5)(2)=2610=2.6.h(0) = \frac{2(0) - 26}{(0 + 5)(2)} = \frac{-26}{10} = -2.6.

  2. As xx \to \infty: The leading terms of the numerator and denominator dominate: h(x)2x2x3=0.h(x) \sim \frac{2x^2}{x^3} = 0. Hence, h(x)0h(x) \to 0 as xx \to \infty.

  3. Finding Critical Points: By setting h(x)=0h'(x) = 0, we can find the local maximum (details derived from previous steps show that) occurs at: x=5.x = \sqrt{5}. Plugging 5\sqrt{5} into h(x)h(x) gives: h(5)=2(5)26(5+5)(5+2)=1610+25.h(\sqrt{5}) = \frac{2(5) - 26}{(5 + 5)(\sqrt{5} + 2)} = \frac{-16}{10 + 2\sqrt{5}}.

So the range of h(x)h(x) is: (,h(5)max10+25)\left(-\infty, \frac{h(\sqrt{5}) \text{max}}{10 + 2\sqrt{5}} \right). Thus: $$ Range(h) = \left(-\infty, 0 \right) $.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;