Photo AI

4. (i) Find \( \int \ln(\xi) \, d\xi - Edexcel - A-Level Maths Pure - Question 5 - 2008 - Paper 8

Question icon

Question 5

4.-(i)-Find-\(-\int-\ln(\xi)-\,-d\xi-Edexcel-A-Level Maths Pure-Question 5-2008-Paper 8.png

4. (i) Find \( \int \ln(\xi) \, d\xi. \) (ii) Find the exact value of \( \int_{0}^{\frac{\pi}{2}} \sin^{2} x \, dx. \)

Worked Solution & Example Answer:4. (i) Find \( \int \ln(\xi) \, d\xi - Edexcel - A-Level Maths Pure - Question 5 - 2008 - Paper 8

Step 1

Find \( \int \ln(\xi) \, d\xi. \)

96%

114 rated

Answer

To solve the integral ( \int \ln(\xi) , d\xi ), we will use integration by parts. Let:

  • ( u = \ln(\xi) ) so that ( du = \frac{1}{\xi} , d\xi )
  • ( dv = d\xi ) giving ( v = \xi )

Applying integration by parts:

udv=uvvdu\int u \, dv = uv - \int v \, du

Substituting in the values:

ln(ξ)dξ=ξln(ξ)ξ1ξdξ\int \ln(\xi) \, d\xi = \xi \ln(\xi) - \int \xi \cdot \frac{1}{\xi} \, d\xi

This simplifies to:

=ξln(ξ)1dξ=ξln(ξ)ξ+C= \xi \ln(\xi) - \int 1 \, d\xi = \xi \ln(\xi) - \xi + C

Thus, the result is:

ln(ξ)dξ=ξln(ξ)ξ+C\int \ln(\xi) \, d\xi = \xi \ln(\xi) - \xi + C

Step 2

Find the exact value of \( \int_{0}^{\frac{\pi}{2}} \sin^{2} x \, dx. \)

99%

104 rated

Answer

To find the integral ( \int_{0}^{\frac{\pi}{2}} \sin^{2} x , dx ), we use the identity:

sin2x=1cos(2x)2\sin^{2} x = \frac{1 - \cos(2x)}{2}

Thus, we rewrite the integral:

0π2sin2xdx=0π21cos(2x)2dx\int_{0}^{\frac{\pi}{2}} \sin^{2} x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, dx

This can be separated into two integrals:

=120π21dx120π2cos(2x)dx= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 \, dx - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx

Calculating these integrals, we find:

  1. ( \int_{0}^{\frac{\pi}{2}} 1 , dx = \frac{\pi}{2} )
  2. For the second integral, we have:

cos(2x)dx=12sin(2x)\int \cos(2x) \, dx = \frac{1}{2} \sin(2x)

Evaluating from ( 0 ) to ( \frac{\pi}{2} ):

=12[sin(π)sin(0)]=0= \frac{1}{2} \left[ \sin(\pi) - \sin(0) \right] = 0

Putting it all together:

=12π20=π4= \frac{1}{2} \cdot \frac{\pi}{2} - 0 = \frac{\pi}{4}

Thus, the exact value is:

0π2sin2xdx=π4\int_{0}^{\frac{\pi}{2}} \sin^{2} x \, dx = \frac{\pi}{4}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;