Photo AI

Find all the solutions of $$2 \cos 2\theta = 1 - 2 \sin \theta$$ in the interval $0 \leq \theta < 360^\circ$. - Edexcel - A-Level Maths Pure - Question 4 - 2011 - Paper 4

Question icon

Question 4

Find-all-the-solutions-of--$$2-\cos-2\theta-=-1---2-\sin-\theta$$--in-the-interval-$0-\leq-\theta-<-360^\circ$.-Edexcel-A-Level Maths Pure-Question 4-2011-Paper 4.png

Find all the solutions of $$2 \cos 2\theta = 1 - 2 \sin \theta$$ in the interval $0 \leq \theta < 360^\circ$.

Worked Solution & Example Answer:Find all the solutions of $$2 \cos 2\theta = 1 - 2 \sin \theta$$ in the interval $0 \leq \theta < 360^\circ$. - Edexcel - A-Level Maths Pure - Question 4 - 2011 - Paper 4

Step 1

Substituting values

96%

114 rated

Answer

We start by rewriting the equation:

2(12sinθ)=12sinθ2(1 - 2\sin \theta) = 1 - 2 \sin \theta

This simplifies to:

24sinθ=12sinθ.2 - 4\sin \theta = 1 - 2\sin \theta.

Step 2

Rearranging to form a quadratic

99%

104 rated

Answer

Next, rearranging gives us a quadratic in terms of sine:

4sin2θ2sinθ=14\sin^2 \theta - 2\sin \theta = 1

or,

4sin2θ2sinθ1=0.4\sin^2 \theta - 2\sin \theta - 1 = 0.

Step 3

Using the quadratic formula

96%

101 rated

Answer

Applying the quadratic formula, where ( a = 4, b = -2, c = -1 ):

sinθ=b±b24ac2a=2±(2)24(4)(1)2(4)\sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{(-2)^2 - 4(4)(-1)}}{2(4)}

This results in:

sinθ=2±4+168=2±208=2±258=1±54.\sin \theta = \frac{2 \pm \sqrt{4 + 16}}{8} = \frac{2 \pm \sqrt{20}}{8} = \frac{2 \pm 2\sqrt{5}}{8} = \frac{1 \pm \sqrt{5}}{4}.

Step 4

Finding principal values

98%

120 rated

Answer

The principal values can be derived from the solutions of:

  • For ( \sin \theta = \frac{1 + \sqrt{5}}{4} ): Calculate the angles.
  • For ( \sin \theta = \frac{1 - \sqrt{5}}{4} ): Since this yields a negative sine value, find angles for sine being negative.

Calculating:

  • The solutions yield ( \theta = 54^\circ, 126^\circ, 198^\circ, 342^\circ ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;